Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Clim. Past, 10, 921-938, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
09 May 2014
Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum
J. G. Anet1, S. Muthers2,3, E. V. Rozanov1,4, C. C. Raible2,3, A. Stenke1, A. I. Shapiro4, S. Brönnimann3,5, F. Arfeuille3,5, Y. Brugnara3,5, J. Beer6, F. Steinhilber6, W. Schmutz4, and T. Peter1 1Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland
2Climate and Environment Physics, Physics Institute, University of Bern, Bern, Switzerland
3Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
4Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Davos, Switzerland
5Institute of Geography, University of Bern, Bern, Switzerland
6Eawag, Surface Waters group, Dübendorf, Switzerland
Abstract. The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.

Citation: Anet, J. G., Muthers, S., Rozanov, E. V., Raible, C. C., Stenke, A., Shapiro, A. I., Brönnimann, S., Arfeuille, F., Brugnara, Y., Beer, J., Steinhilber, F., Schmutz, W., and Peter, T.: Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum, Clim. Past, 10, 921-938, doi:10.5194/cp-10-921-2014, 2014.
Publications Copernicus