Antarctic ice-sheet response to atmospheric CO\(_2\) and insolation in the Middle Miocene

P. M. Langebroek\(^1,\)*, A. Paul\(^1,2\), and M. Schulz\(^1,2\)

\(^1\)Faculty of Geosciences, University of Bremen, Bremen, Germany
\(^2\)MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

*now at: Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Received: 17 July 2008 – Published in Clim. Past Discuss.: 12 August 2008
Revised: 15 September 2009 – Accepted: 18 September 2009 – Published: 22 October 2009

Abstract. Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (\(p\)CO\(_2\)) in combination with orbital forcing. A complication is the large uncertainty in the magnitude and timing of the reconstructed \(p\)CO\(_2\) variability and additionally the low temporal resolution of the available \(p\)CO\(_2\) records in the Middle Miocene. We used an ice-sheet-climate model of reduced complexity to assess variations in Antarctic ice sheet volume induced by \(p\)CO\(_2\) and insolation forcing in the Middle Miocene. The ice-sheet sensitivity to atmospheric CO\(_2\) was tested for several scenarios with constant \(p\)CO\(_2\) forcing or a regular decrease in \(p\)CO\(_2\). This showed that small, ephemeral ice sheets existed under relatively high atmospheric CO\(_2\) conditions (between 640–900 ppm), whereas more stable, large ice sheets occurred when \(p\)CO\(_2\) was less than \(\sim\)600 ppm. The main result of this study is that the \(p\)CO\(_2\)-level must have declined just before or during the period of oxygen-isotope increase, thereby crossing a \(p\)CO\(_2\) glaciation threshold of around 615 ppm. After the decline, the exact timing of the Antarctic ice-sheet expansion depends also on the relative minimum in summer insolation at approximately 13.89 million years ago. Although the mechanisms described appear to be robust, the exact values of the \(p\)CO\(_2\) thresholds are likely to be model-dependent.

1 Introduction

Over the last 65 million years (Ma) the climate of the Earth has undergone a long-term cooling (e.g. Zachos et al., 2001; Shevenell et al., 2004). Superimposed on this gradual cooling are several shifts of a sudden increase in oxygen isotope values (\(\delta^{18}\)O) and a global sea-level drop (Miller et al., 1998, 2005). These events indicate rapid cooling and expansion of the Antarctic ice sheet. The rapid transitions could be caused by changes in ocean circulation and closing/opening of gateways (e.g. Flower and Kennett, 1995), enhanced chemical weathering and burial of organic matter (e.g. Raymo, 1994), or low eccentricity forcing in combination with a decline in atmospheric CO\(_2\) partial pressure (\(p\)CO\(_2\)) (Holbourn et al., 2005, 2007).

This study addresses the last hypothesis by exploring the response of the Antarctic ice sheet to variations in \(p\)CO\(_2\) and insolation. The ice-sheet fluctuations of one of the most profound cooling events in the Cenozoic, the Middle Miocene climate transition (e.g. Shevenell et al., 2004; Holbourn et al., 2005) were computed in an ice sheet-climate model, which was forced by \(p\)CO\(_2\) and insolation only. In the Middle Miocene the Antarctic continent was located close to its present position and the Antarctic Circumpolar Current was developed as well. Small, highly dynamic, ice sheets covered Antarctica in the Early Miocene (e.g. Pekar and DeConto, 2006; Van Tuyll et al., 2007) and possibly started expanding from \(\sim\)15 Ma in an orbitally-paced fashion (Shevenell et al., 2008). We investigated the final advance into a large ice sheet, which occurred between 13.9 and 13.8 Ma (Holbourn et al., 2005). High-resolution benthic \(\delta^{18}\)O\(_c\) records (Shevenell et al., 2004; Holbourn et al., 2005) show a mean increase of approximately 0.5%o for this transition (Fig. 1).

A remarkable difference of this glaciation with respect to earlier events (e.g. the Eocene-Oligocene transition, DeConto and Pollard, 2003; Coxall et al., 2005; Pollard and DeConto, 2005) is the relatively small decline in atmospheric CO\(_2\) content. From the Early Miocene onwards, \(p\)CO\(_2\) values were relatively low and fluctuations small (e.g. Zachos et al., 2008, and references therein). Unfortunately, the set of published \(p\)CO\(_2\) data covering the Middle Miocene is
very small. The methods used to reconstruct paleo-pCO$_2$ levels (e.g. alkenones, Pagani et al., 2005, stomatal index, Kürschner et al., 2008, and boron isotopes, Pearson and Palmer, 2000; Demicco et al., 2003) involve large uncertainties. Furthermore, the different methods result in values that differ by more than 100–200 ppm amongst each other, indicating even larger errors than those assigned to the individual reconstructions.

We first explore the stability of the modeled Antarctic ice sheet under a large range of pCO$_2$ levels in order to determine pCO$_2$-thresholds for which the Antarctic continent glaciates and deglaciates (hysteresis experiments). Secondly, the ice-sheet response to variations in insolation is investigated by keeping the pCO$_2$ at a constant level. Thirdly, the combined effect of varying pCO$_2$ and insolation forcings on the ice-sheet size are assessed.

2 Methods and experimental set-up

2.1 Ice sheet-climate model

In this study, we used a coupled ice sheet-climate model. The ice-sheet component has previously been applied to study Quaternary Northern Hemisphere glaciations (Sima, 2005; Sima et al., 2006). We changed the model set-up to an Antarctic configuration, forced only by pCO$_2$ and insolation. Furthermore we extended the model by including important climatic feedbacks.

The climate component consists of three large-scale boxes covering the entire southern hemisphere: a low (0–30° S), middle (30–60° S) and high (60–90° S) latitude cells. Each compartment is forced by shortwave (SW) and longwave (LW) radiation at the top of the atmosphere and sensible heat transport by eddies (HT), as well as latent heat transport induced by evaporation and snowfall (LH). The two lower latitude boxes are described by one general temperature (T) and albedo (α). Lower: The high-latitude, Antarctic box is subdivided into smaller grid cells with a resolution of 0.5° in latitude. For each cell the energy and mass balances are solved for surface and atmospheric temperatures (T_s and T_a, respectively). Fluxes include incoming and outgoing shortwave radiation at the top of atmosphere (SW_a) and at the land/ice/snow surface (SW_i); reflected longwave radiation at the top of atmosphere (LW_a); longwave (LW), sensible heat (SH) and latent heat of evaporation (LH_{eva}) fluxes between the surface and atmosphere; latent heat of snowfall in atmosphere (LH_{snow}); heat flux into underlying bedrock (F_s). In all boxes ice flow velocities and ice height are computed, depending on the mass balance, local temperature (T), albedo (α) and isostasy.

Evaporation and snow accumulation. The physical processes within the high latitude box are resolved in 0.5° latitude bands. In these boxes, energy balances of the atmosphere and surface are resolved separately, but computed simultaneously. Additionally, the mass balance for the ice-sheet component is modeled. Daily computation is necessary, because the orbital cycle as well as processes of snow accumulation and melting have a strong seasonal imprint (Pollard, 1983).
The atmospheric and surface energy balances include parameterizations for short- and long-wave radiation, latent heat of evaporation and snowfall, sensible heat exchange, heat flux into the surface and energy used by melting of ice and snow (Pollard, 1982, 1983; Jentsch, 1987, 1991; Wang and Mysak, 2000). Total snow accumulation and its latitudinal distribution is tuned to the present-day (total) Antarctic accumulation. The parameterization for snowfall depends on surface temperature, distance from the coast, surface height and daily surface temperature (Oerlemans, 2002, 2004). Therefore, it includes important processes such as the elevation-desert effect (Pollard, 1983).

The ice-sheet model is symmetric around the South Pole. Within the ice sheet, flow velocities and temperatures are computed with a vertical resolution of 12 layers. The altitude and ice thickness of every latitude grid cell are derived by solving the continuity equation using basal melting, local bedrock isostasy and a surface mass balance (Sima, 2005; Sima et al., 2006). The initial ice-free bedrock topography is reconstructed using the BEDMAP project database (Lythe et al., 2000) for bedrock elevation and ice thickness, considering local isostasy. For the axially symmetric ice-sheet model, the high spatial resolution of the dataset is reduced, averaging the topography into the 0.5° wide latitude bands. The initial bedrock used by the model is a simplified version of the zonally-averaged topography that includes a bulge close to the continental shelf and a flatter hinterland, resembling East Antarctica. Although no separate ocean component is included in the model, the energy and mass balances within the Antarctic box include the albedo of (seasonally varying) sea-ice. This is parameterized depending on the near-surface temperature of the appropriate grid cells. The surface albedo of the Antarctic continent depends on the ice and snow content of the corresponding grid cell and combines albedos of land (0.3), ice (0.35) and snow (0.75). A more detailed description of the climate forcing can be found in the Appendix.

2.2 Climate sensitivity of the model

The equilibrium climate sensitivity as estimated from 19 different atmospheric general circulation models ranges from 2.1 to 4.4°C, with an average of 3.2°C (Randall et al., 2007). These models do not include a dynamic ice-sheet component, but do account for changes in snow cover and albedo. To tune the climate sensitivity of our model, we first ran the coupled ice-sheet-climate model for the last 100 ka with constant pre-industrial pCO$_2$ of 280 ppm and varying orbital parameters. The modeled present-day ice sheet is in equilibrium with the radiative forcing and has a volume of 25.0×1015 m3, similar to its estimated present-day size (e.g. Huybrechts et al., 2000; Oerlemans, 2002; Huybrechts, 2004). The mean hemispheric surface temperature is 14.9°C. We deliberately enhanced the model sensitivity to changes in pCO$_2$ in order to account for the missing water vapor feedback (see Appendix). In the tuned model, a doubling of pCO$_2$ while maintaining fixed ice-sheet height and (seasonal) insolation distribution results in a hemispheric mean temperature increase of 2.5°C. This value falls within the range of the values reported by the IPCC report (2007). The largest increase is found in atmospheric and surface temperatures in the Antarctic high latitude box, with values up to 3.9 and 4.4°C, respectively. This polar amplification is due to the included ice-albedo feedback and is comparable to pCO$_2$-doubling simulations in comprehensive climate models (e.g. Masson-Delmotte et al., 2006a,b).

2.3 Insolation and pCO$_2$ forcings

Based on Earth’s orbital elements as computed by Laskar et al. (2004) we calculated daily insolation (Berger, 1978a,b) at the top of the atmosphere (for every latitude box) and at the surface for the high resolution Antarctic cells (60–90° S). We used two different averages for comparison to ice-volume variations: annual mean and caloric summer (half-year of highest values) insolation. Since the atmospheric CO$_2$ level in the Middle Miocene is not very well constrained, the model was forced by prescribed scenarios of constant pCO$_2$ and by a constant decrease in pCO$_2$.

2.4 Experimental set-up

Firstly, hysteresis experiments were carried out in order to find pCO$_2$-threshold values at which the Antarctic continent (de)glaciates. Two experiments were performed, one with and one without orbital forcing. The former started at 35 Ma at a pCO$_2$ level of 1120 ppm. After slowly decreasing pCO$_2$ to 280 ppm (reached at 20 Ma), pCO$_2$ was increased again to 1400 ppm (at 0 Ma). Because of this very slow decrease, the timing of the orbital parameters is not very important and the results would be similar if the experiments had started earlier or later. The latter experiment followed a similar scheme, but started with 560 ppm at 20 Ma. pCO$_2$ of 280 ppm was reached at 15 Ma and was increased to 1120 ppm at 0 Ma. In this case the timing is irrelevant, because the orbital parameters were fixed to present-day. In both experiments, the rate of pCO$_2$ decrease as well as increase was 280 ppm/5 Ma (as in Pollard and DeConto, 2005) and ice volume is considered to be close to equilibrium.

Secondly, different levels of constant atmospheric CO$_2$ were applied for model runs of a 1 Ma period, from 14.2 to 13.2 Ma (preceeded by a 100 ka long spin-up time). This allows investigation of the effect of insolation fluctuations on ice-sheet volume under different constant pCO$_2$ conditions. The range between 300 and 1100 ppm was investigated in steps of 50 ppm with an increased resolution of 10 ppm from 590 to 650 ppm.

Thirdly, sensitivity experiments involving a reduction in pCO$_2$ were carried out, focusing on ice-sheet response to the level, rate and timing of pCO$_2$ decrease. These experiments
Fig. 3. Hysteresis experiment. Starting from no-ice conditions and high $p\text{CO}_2$ (orange) or starting from full ice sheet and low $p\text{CO}_2$ (green). Upper panel shows hysteresis including orbital forcing, lower panel without orbital variations. Rate of $p\text{CO}_2$ change is 280 ppm/5 Ma.

ran from 14.1 to 13.7 Ma (without spin-up time) with varying insolation.

In all experiments daily insolation as a function of latitude was applied. The computations were performed at a daily time-step.

3 Results

3.1 Hysteresis experiments

To assess the sensitivity of the simulated ice volume to $p\text{CO}_2$ changes and to find the critical range of $p\text{CO}_2$ at which the Antarctic continent (de)glaciates, two types of hysteresis experiments were performed. The first included orbital variations, whereas the second was only forced by atmospheric CO_2 (Fig. 3). In the former case of including orbital variations, the (rapid) transition into a large ice sheet occurred around 615 ppm, preceded by a semi-stable small ice sheet. Orbital forcing acts as noise, therefore the ice sheet deglaciated under a relatively low $p\text{CO}_2$ when this was included (∼725 ppm), resulting in a small hysteresis window of approximately 110 ppm. In the latter case, where the orbital variations were omitted, glaciation and deglaciation occurred at ∼436 and 1004 ppm, respectively, accounting for a much larger hysteresis window of ∼568 ppm. The modeled rate of $p\text{CO}_2$ change was slow at 280 ppm/5 Ma, similar to the experiments of Pollard and DeConto (2005).

3.2 Constant $p\text{CO}_2$ experiments

The critical $p\text{CO}_2$ for glaciation is around 615 ppm, when including orbital forcing. Below this threshold the entire Antarctic continent glaciates, with mean ice volumes between 23 and 25×10^{15} m3 (Fig. 4). Between ∼640 and ∼700 ppm small ice sheets exist (almost) continuously over the entire modeled period. Higher $p\text{CO}_2$ levels result in small, ephemeral ice sheets. Under constant $p\text{CO}_2$ forcing and insolation derived from Middle Miocene orbital parameters (between 14.2 and 13.2 Ma) either large or small ice sheets occurs (Figs. 4 and 5). Only constant $p\text{CO}_2$ values close to the threshold of 615 ppm cause a transition between these two states. Using constant 620 ppm forcing, Antarctica glaciates at 13.43 Ma.

The small ice sheets show large variations in ice volume, up to 2.3×10^{15} m3 for constant $p\text{CO}_2$ of 640 ppm. The volume of large ice sheets vary less under constant $p\text{CO}_2$ conditions, with a maximum standard deviation of 1.0×10^{15} m3 for $p\text{CO}_2$ values close to the threshold and nearly no variance at lower $p\text{CO}_2$ levels. Two runs with constant $p\text{CO}_2$ close to the glaciation threshold and maximum ice-volume variability are used to represent the large ice sheet (590 ppm) and the small ice sheet (640 ppm).

The correlation between ice-volume variation and annual and summer mean insolation was computed for every 5°
of southern latitude (Fig. 6). Variations in volume of both the large and small ice sheet correlate better to high (maximum around 70° S), than to low latitudes. In the case of the large ice sheet, the highest correlation coefficients are reached when ice volume lags insolation by approximately 2 ka. Maximum correlation coefficient values are 0.28 and 0.78 for annual and summer mean insolation, respectively. The small ice sheet matches insolation averages best for a lag of 5–6 ka. Maximum correlation coefficients for annual and summer mean insolation are 0.49 and 0.62, respectively.

3.3 Varying $p\text{CO}_2$ experiments

The first sensitivity test focusses on initial and final $p\text{CO}_2$ levels. In this set of experiments atmospheric $p\text{CO}_2$ decreases linearly at a rate of 50 ppm/ka (Fig. 7 – yellow to red curves). In every experiment, the mid-point of the $p\text{CO}_2$ drop occurs at the same moment in time (13.9 Ma), varying only the initial and final $p\text{CO}_2$ levels. The resulting ice volume transitions occur at about the same time, whereby the largest difference in $p\text{CO}_2$ forces the most rapid ice-sheet transition (Fig. 7 – red curve). Repeating the experiment for different slopes of the $p\text{CO}_2$ transition gives practically identical results (not shown).

The second test investigates the effect of the rate at which the atmospheric $p\text{CO}_2$ decreases during ice-sheet growth (Fig. 7 – blue curves). Experiments forced by a slow decrease in $p\text{CO}_2$ result in a variable duration of ice-sheet transition, between 20–30 ka. In runs with a rapid $p\text{CO}_2$ drop, the transition length is independent of the $p\text{CO}_2$ drawdown rate. This relation also holds for different timings of the $p\text{CO}_2$-transition (not shown).

In the last set of sensitivity experiments, the forcing is applied at different moments in time resulting in different timing of the ice-sheet expansion (Fig. 8).

4 Discussion

4.1 Hysteresis experiments

In the hysteresis experiment including Miocene orbital variations, a glaciation $p\text{CO}_2$-threshold of approximately 615 ppm is found. The Antarctic ice sheet deglaciates when the $p\text{CO}_2$ increases by another ~ 110 ppm (at ~ 725 ppm). Annual mean temperatures over Antarctica differ by approximately 2.5°C between the glaciation and deglaciation thresholds. This hysteresis window is slightly smaller than in simulations with the ice-sheet model of Pollard and DeConto (2005) (\sim 120 ppm), but similar to the computations of Huybrechts (1993). The latter author proposed a range in hysteresis width varying between \sim 1 and 5°C depending on the initial bedrock topography. Using a present-day orbital setting, Antarctic glaciation and deglaciation occurs under \sim 435 and \sim 1005 ppm, respectively (Fig. 3). This much larger hysteresis window is consistent with the findings of Pollard and DeConto (2005). Nevertheless, the synthetic set of orbital parameters applied by DeConto and Pollard (2003) and Pollard and DeConto (2005) resulted in a less extreme insolation variation than the orbital parameters used in this study (following Laskar et al., 2004). Indeed, when applying the DeConto and Pollard (2003) set of orbital parameters the hysteresis window increases to approximately 140 ppm (not shown).

Unlike the width of the hysteresis window, the threshold values differ from previous studies (Huybrechts, 1993;
P. M. Langebroek et al.: Antarctic ice-sheet response to $p\text{CO}_2$ and insolation

Pollard and DeConto, 2005). These show glaciation and deglaciation thresholds under much higher Antarctic temperatures (10–20°C higher than present-day, Huybrechts, 1993) or higher $p\text{CO}_2$ levels (~780 and ~900 ppm, DeConto and Pollard, 2003). Although the values of DeConto and Pollard (2003) and DeConto et al. (2008) apply well to the Eocene-Oligocene transition, it is unlikely that $p\text{CO}_2$ levels in the Middle Miocene declined from values above ~780 ppm. The relatively low glaciation threshold modeled in this study is much closer to the $p\text{CO}_2$-reconstructions for the Middle Miocene (e.g. Pearson and Palmer, 2000; Demicco et al., 2003; Pagani et al., 2005; Kürschner et al., 2008).

We repeated the experiments for a higher value of the CO_2-emission factor (see Sect. A4 in the Appendix) in the Southern high-latitude box. This implies a stronger polar amplification, and indeed higher annual mean Antarctic temperatures were computed (maxima of ~11.6°C). The

Fig. 7. $p\text{CO}_2$ sensitivity experiments – level of initial and final $p\text{CO}_2$ (yellow to red colors) and rate of $p\text{CO}_2$ decrease (blue colors). Colors in upper panel show $p\text{CO}_2$ forcing and correspond to ice-volume transition in lower panel. Blue box indicates approximate Antarctic glaciation as retrieved from sedimentary records. Glaciation is independent from initial and final $p\text{CO}_2$ levels (red to orange). On the contrary, the rate of the $p\text{CO}_2$ drawdown is important. Extremely slow drop in $p\text{CO}_2$ (dark blue) results in delayed ice-sheet extension, relatively slow decrease (light blue) causes appropriate timing with glaciation. A $p\text{CO}_2$ drop of 50 ppm/50 ka or faster (for example 50 ppm/4 ka in orange) gives the same ice-sheet transition as 50 ppm/50 ka.

Fig. 8. $p\text{CO}_2$ sensitivity experiment – timing of $p\text{CO}_2$ decrease. Colors in (a) show $p\text{CO}_2$ forcing and correspond to ice-volume transition in (b). Blue box indicates approximate Antarctic glaciation as found in sedimentary records. Green/orange curves result from fast $p\text{CO}_2$ transition (50 ppm/4 ka); purple/blue ones from a slow drop (50 ppm/200 ka). Black (gray) text in legend indicates best (not) fitting solutions (see Discussion section). Orange and dark blue curves correspond to their counterparts in Fig. 7. (c) Annual mean insolation at 70° S. (d) Summer mean insolation at 70° S.
resulting hysteresis window shifted to lower pCO_2-values, with a glaciation threshold of approximately 400 ppm and a deglaciation around 425 ppm.

The modeled glaciation threshold value also depends on the initial bedrock topography. Huybrechts (1993) showed that the difference in Antarctic mean temperature between a flat and an unloaded present-day bedrock topography is approximately 8°C, with higher bedrock elevations glaciating at higher temperatures. The initial bedrock topography used in this study has elevations in between these extreme bedrock scenarios. Increasing the initial topography would probably cause an Antarctic glaciation under higher pCO_2-values. The exact effects should be investigated in a bedrock-sensitivity study, which is beyond the scope of this study.

Another modeled process possibly affecting the glaciation threshold is the mass balance computation. The ice sheet-climate model lacks an interactive hydrological model. The total accumulation and its latitudinal distribution is tuned to values describing the present-day Antarctic ice sheet and depends on distance to the South Pole, surface height and daily surface temperature. However, if other factors have a large impact on the local mass balance and were significantly different in the past, the glaciation threshold might be different.

In summary, the pCO_2 threshold values could be slightly different than presented above, mainly depending on the initial bedrock topography. If the climate sensitivity and the hydrological cycle were significantly different in the past, these would also affect the threshold values.

4.2 Constant pCO_2 experiments

Two types of stable ice sheets occur under the large range of pCO_2-levels investigated (Fig. 4). Small ice sheets show large ice-volume variations, where obliquity and precession are the dominant frequencies. On the other hand, large ice sheets reveal smaller ice-volume variations. These small fluctuations have a stronger influence of precession over obliquity and are therefore strongly correlated to summer insolation than to annual mean insolation (Fig. 6). Huybers and Tziperman (2008) found a comparable relation between the ice-sheet size and the dominant frequencies for a Northern Hemisphere Pliocene ice sheet. They proposed that in the warm climate conditions under which thin (small) ice sheets occur, a long ablation season can counterbalance the opposite effect precession has on summer and fall insolation. The higher insolation intensity is then counteracted by a shorter summer duration. This effect reduces the precession signal in the ice-volume variations, and the obliquity becomes the dominant frequency. Raymo and Nisancioglu (2003) proposed that the obliquity signal is the result of variations in the insolation gradient between low and high latitudes, causing variations in the meridional moisture and heat fluxes. However, our results show a strong obliquity frequency in the ice volume without explicitly calculating a moisture flux between low and high latitudes. Our modeled obliquity could be caused by the opposing effects of insolation intensity and duration (as proposed by Huybers and Tziperman, 2008), because we included daily insolation in the ice sheet-climate model. In large ice sheets the ablation period is too short to be influenced by this effect.

The difference in time lag between ice volume and insolation (5–6 ka for a large ice sheet versus 2 ka for a small ice sheet) is probably also related to the different frequencies dominating the ice-volume variations. Large ice sheets appear to be closer to resonance with the precessional forcing and therefore show a small time lag. Small ice sheets follow precessional forcing less closely, which explains the large time lag to insolation forcing.

The Antarctic ice-sheet expansion largely depends on a strong minimum in (summer) insolation (see next section), indicating a dependence on the insolation intensity, not on the summer duration.

Under constant pCO_2, the small ice sheets show much larger variations in volume than the large ice sheets. This can partly be observed in the oxygen-isotope record (Table 1). An F-test shows that the variance of the original oxygen-isotope data in the restricted time domains is significantly different (significance level of 90%). This difference might be explained by the fact that small ice sheets are more easily perturbed by changes in the forcing. Additionally, ablation plays a major role in ice-volume variations and occurs on two sides of the small ice sheet, whereas the large ice sheet only has an ablation zone at the outer rim (Fig. 5).

Correlations between continental ice volume and the oxygen isotopic composition of seawater vary around 1%e for 100 m sea-level change (e.g. Fairbanks and Matthews, 1978; Schrag et al., 1996; Zachos et al., 2001). Using the present ocean area (3.6 \times 106 km2) and the densities of water and ice (1000 kg/m3 and 910 kg/m3, respectively), an apparent sea-level drop of 100 m is equivalent to ice build-up with a volume of approximately 40×10^15 m3. The ice-volume variations in the large and small ice sheet result in sea-level fluctuations of 2.654 and 6.840 m, respectively (Table 1). This corresponds to $\delta^{18}O$ variations of 0.027 and 0.068%. Accordingly, the fluctuations in the modeled ice-volume records can explain ~ 17 and $\sim 36\%$ of the variations found in the benthic oxygen-isotope records. The calibration does not account for variations in pCO_2 and does not take care of any effects caused by changes in (deep sea) temperature, salinity, local runoff, oxygen-isotope ratio of the ice, etc. Notwithstanding the crude calibration, the correlation between the standard deviations of data- and model-derived oxygen-isotope ratios is high.

The synchronous eccentricity and obliquity minima at ~ 13.84 Ma (Abels et al., 2005) result in a relatively constant, average-to-low insolation. This has been proposed as being partly responsible for the large-scale glaciation in the Middle Miocene (Holbourn et al., 2005). In our ice sheet-climate model, the occurrence of such a special configuration or natural variability in insolation itself is not sufficient
for an Antarctic glaciation at that time. Only constant atmospheric CO₂ levels at or very close to the threshold of 615 ppm can induce a transition from small to large ice volume (Fig. 4). However, the modeled timing of the transition occurs ~450 ka later than the transition identified from oxygen isotope records. Therefore, in order to glaciate the Antarctic continent at the right moment in time, a decrease in pCO₂ seems unavoidable (as previously proposed by Holbourn et al., 2005).

All high-resolution oxygen-isotope records (Shevenell et al., 2004; Holbourn et al., 2005) show a mean increase of approximately 0.5‰ from the period before (13.9–14.5 Ma) to the period after (13.2–13.8 Ma) the rapid transition (see also Fig. 1). The two stable large and small ice-sheet simulations around the pCO₂-threshold have average ice volumes of ~23.7 and ~6.5 × 10¹⁵ m³. A pCO₂-decline between these two states would result in a sea level difference of ~43.3 m. This sea-level drop would increase the oxygen-isotope ratio of sea water by approximately 0.43‰. This suggests that more than 85% of the Middle Miocene oxygen-isotope transition found in the sedimentary records can be explained by ice-volume expansion on Antarctica. In future research this comparison will be further investigated by including oxygen isotopes directly in the ice sheet-climate model.

4.3 Varying pCO₂ experiments

The first sensitivity test (see Sect. 3.3) showed that a larger difference between initial and final pCO₂ forcing resulted in a faster ice-sheet expansion. This can be explained by the different variability of the ice sheet at different pCO₂ levels. The larger standard deviations of 1.051 × 10¹⁵ m³ and 2.710 × 10¹⁵ m³ (Table 1) in the 590 and 640 ppm runs, respectively, increase the probability for insolation variations to act against a rapid ice-volume transition. The sedimentary records do not indicate such a rapid glaciation (e.g. Shevenell et al., 2004; Holbourn et al., 2005), but do show large variability in time (Fig. 1). Furthermore, under high pCO₂ levels hardly any ice covered the Antarctic continent (Fig. 4 and 7). Previous studies (e.g. Pekar and DeConto, 2006) did show evidence for a dynamic ice sheet shortly before the Middle Miocene. Therefore, the relatively small difference in pCO₂ between 640 and 590 ppm, crossing the threshold value of ~615 ppm, was used in the remaining sensitivity experiments.

The second sensitivity test dealt with the slope of the atmospheric CO₂ drawdown (Fig. 7 – blue curves). The duration of the ice-sheet transition was defined as the period in which ice volume is larger than the maximum volume of the small ice sheet and smaller than the minimum size of the large ice sheet. Additional experiments showed that the slow forcing did not have a strong effect on the duration of the ice-sheet expansion. The duration merely depended on the timing of the pCO₂ drop. This quite constrained timing (see next paragraph) limited the glaciation event to a length of approximately 30 ka, comparable to the time interval of 30–40 ka derived from δ¹⁸O records (cf. Holbourn et al., 2005).

The third set of sensitivity experiments investigated the timing of the pCO₂ decrease for 50 ppm/200 ka and for 50 ppm/4 ka (Fig. 8). The best fit to δ¹⁸O data (glaciation time shown by blue box) occurred when the simulations crossed the pCO₂ threshold of approximately 615 ppm between ~13.90 and ~13.93 Ma.

It has been proposed that the final step in Antarctic glaciation occurs due to synchronous minima in eccentricity and obliquity around 13.84 Ma (e.g. Holbourn et al., 2005; Abels et al., 2005), which resulted in average to low summer and annual mean insolation at 70°S. Also in our ice sheet-climate model, the abrupt large-scale ice-volume increases occur
during minima in summer insolation. For a modeled ice-sheet expansion to occur in the Middle Miocene at the same time as indicated by the shift to heavier benthic oxygen-isotope ratios in the sedimentary records, the minimum in high-latitude summer insolation at approximately 13.89 Ma appears to be the most suitable candidate for triggering the transition. A clear example is the experiment of fast pCO$_2$ decrease at 13.925 Ma (Fig. 8 – yellow curve), where an increasing insolation opposed ice growth. Only when the summer insolation reached the minimum of \sim13.89 Ma, the ice volume expanded. Our results suggest 13.89 Ma as a more important insolation moment for the Antarctic glaciation than the previously suggested 13.84 Ma. These experiments were based on a 50 ppm difference in pCO$_2$, but extending this range would give similar results (see first sensitivity test).

The comparison of the three sensitivity tests to high-resolution oxygen-isotope records indicates that pCO$_2$ should drop below the threshold of \sim615 ppm just before the ice-sheet transition (as suggested by Holbourn et al., 2005). Most probably the initial and final pCO$_2$ levels were close to the threshold values, otherwise the variation in the ice-sheet volume was extremely small or even no ice was covering the Antarctic continent. The exact timing of the ice-sheet expansion depends largely on the orbital parameters, where the minimum of summer and annual mean insolation at \sim13.89 Ma takes a key position.

5 Conclusions

Despite the relatively simple geometry of our ice-sheet-climate model, the realistically tuned climate sensitivity and hysteresis experiments allows us to conclude that the mechanism described below is robust. However, exact values are model dependent and should only be taken as a guideline.

1. It is very unlikely that a constant pCO$_2$ in combination with orbital forcing induced the large-scale Antarctic glaciation in the Middle Miocene. Constant levels produced either a large (below \sim610 ppm) or a small (above \sim630 ppm) ice sheet. Modeled ice volume had a smaller ice-volume standard deviation than expected from benthic oxygen-isotope records. The residual variation in these isotope records probably originate from fluctuations in pCO$_2$ and other changes in climatic or local conditions.

2. The extent of the pCO$_2$ drawdown was not important for the timing or duration of the glaciation transition, as long as it crossed the \sim615 ppm threshold. Moderate or quick pCO$_2$ reductions resulted in comparable and realistic ice-sheet extension. The timing of the pCO$_2$ decrease was important, because favorable orbital parameters enhanced the ice-sheet expansion. In order to expand the Antarctic ice sheet in the appropriate time interval as indicated by benthic oxygen-isotope records (13.84–13.88 Ma) the pCO$_2$ threshold must have been crossed between \sim13.90 and \sim13.93 Ma.

3. After the decrease in pCO$_2$ the minimum in summer insolation restricted the timing of ice growth on Antarctica. Therefore, the main ice-sheet expansion probably started around 13.89 Ma.

Appendix A

Model description

The ice sheet-climate model is controlled by energy and mass balances. Orbital elements are derived following the work of Laskar et al. (2004). They drive the seasonal solar radiation at the top of the atmosphere and define, together with the pCO$_2$, the amount of energy entering the entire climate system.

A1 Energy and temperature balances

The model consists of three large-scale boxes covering the entire southern hemisphere: a low (0–30$^\circ$S), middle (30–60$^\circ$S) and high (60–90$^\circ$S) latitude box (Fig. 2). Within the climate system energy is conserved and changes in time are described by (Pollard, 1983; Hartmann, 1994):

$$\frac{\partial E_{ao}}{\partial t} = R_{TOA} - \Delta F_{ao} + LH$$ \hspace{1cm} (A1)

where E_{ao} is the total energy in the system, t the time, R_{TOA} the net incoming solar radiation at the top of the atmosphere, ΔF_{ao} the divergence of the meridional energy transport in the ocean as well as in the atmosphere, and LH the latent heat added to the atmosphere after condensation and freezing of water vapor. The net incoming radiation is the sum of the incoming short-wave radiation (SW_p) and the outgoing short- and long-wave radiation (LW_p):

$$R_{TOA} = SW_p \uparrow - SW_p \downarrow - LW_p \uparrow.$$

Radiation fluxes in the two lower latitude boxes (0–30$^\circ$S and 30–60$^\circ$S) are parameterized as:

$$SW_p \uparrow - SW_p \downarrow = Q(1 - \alpha_p),$$

$$LW_p \uparrow = \varepsilon_p \sigma T_a^4 + f_{CO_2},$$

where Q is the solar insolation at the top of the atmosphere, α_p the planetary albedo, ε_p the planetary emissivity and σ the Stefan-Boltzmann constant. T_a is interpreted as the near-surface air temperature and f_{CO_2} as the effect of the atmospheric CO$_2$ content (cf., Myhre et al., 1998):

$$f_{CO_2} = -8\frac{\ln(\frac{CO_2}{780})}{\ln(2)} \approx 2.8 - 0.7\ln(CO_2).$$
Therefore, a doubling of pCO_2 from 280 ppm (pre-industrial conditions) to 560 ppm accounts for a reduction of 8 W/m2 in the outgoing longwave radiation of the two lower latitude boxes, accounting not only for pCO_2, but also for other greenhouse gases (mainly water vapor, see Sect. A4).

The meridional heat transport (ΔF_{EO}) depends on wind speed, atmospheric density and heat capacity, for every 0.5° latitude energy and mass balances for the atmosphere and for the surfaces are simultaneously solved. Atmospheric temperature (T_a) is described by:

$$C_a \frac{dT_a}{dt} = Ra + LW + SH + LH_{eva} + LH_{snow}$$

and surface temperature (T_s) by:

$$C_s \frac{dT_s}{dt} = Rs - LW - SH - LH_{eva} - F_s - F_m$$

where $C_{a,s}$ is the heat capacity for the atmosphere and surface, respectively.

The incoming energy at the top of the atmosphere and at the surface is represented as (Jentsch, 1987; Wang and Mysak, 2000):

$$Ra = SW_a - LW_a - LW_a$$

$$Ra = Q(1 - \alpha_a)(1 - \tau)(1 + \tau \alpha_a) - (\varepsilon_2 \sigma T_a^4 + (1 - \varepsilon_1)\sigma T_s^4)$$

$$Rs = SW_s - LW_s$$

$$Rs = \tau Q(1 - \alpha_a)(1 - \alpha_s)$$

where τ is the atmospheric transmissivity of solar radiation, $\alpha_{a,s}$ the atmospheric and surface albedos, ε_2 an emissivity constant and ε_1 a term describing the greenhouse effect (see below).

The longwave and sensible heat fluxes between the atmosphere and surface are parameterized as:

$$LW = \sigma T_a^4 - \varepsilon_1 \sigma T_s^4$$

$$SH = \lambda (T_s - T_a)$$

where λ is a heat exchange coefficient which in principle depends on wind speed, atmospheric density and heat capacity, but is taken to be constant. The heat flux into the subsurface soil or upper ice layer (F_s) is given by:

$$F_s = \frac{2k_1}{\Delta z_1} (T_s - T_a)$$

where k_1 is the thermal conductance of snow and Δz_1 the depth range of conduction.

The latent heat due to evaporation (LH_{eva}) is parameterized as (Hartmann, 1994):

$$LH_{eva} = \rho_{air} L_e C_{DE} U [q_s^* (1 - RH) + \frac{RH}{B_e} \frac{c_p}{L_v} (T_s - T_a)]$$

where ρ_{air} is the air density, L_v is the latent heat of vaporization, C_{DE} an exchange coefficient, U the wind speed, q_s^* the sea surface humidity, B_e the equilibrium Bowen ratio, c_p the specific heat of dry air and RH the relative humidity.

The latent heat associated with snowfall (LH_{snow}) depends on the accumulation of snow:

$$LH_{snow} = L_s A$$

where L_s is the latent heat of sublimation and A the accumulation. The snow is considered to be evaporated in the low latitude box, accounting for the LH-term in the energy equation (Eq. A1). The total accumulation and its latitudinal distribution is tuned to the present-day total Antarctic accumulation and depends on the distance to the South Pole (r), the surface height (h_{sfc}) and the daily surface temperature (T_s) (Oerlemans, 2002, 2004). It therefore includes processes such as the elevation-desert effect (Pollard, 1983):

$$A = (c_a + c_b r) e^{-k_{sch}(r)} e^{-\sigma T_s}$$

where $c_{a,b}$ are (tuning) constants, c_d is a characteristic length scale and κ a constant describing the precipitation dependence on temperature. Only when the local temperature is below 2°C, snow is accumulated (Oerlemans, 2001).

The amount of energy available for melting (F_m) depends on the incoming energy and the thickness and heat capacity of the top surface layer (Fraedrich et al., 2005). The affected layer is 20 cm deep (d_{top}) and consists of snow (d_{snow}), soil (d_{soil}) or a mixture of both. The heat capacity (C_s) used for computation of the surface temperature is therefore computed by:

$$C_s = \frac{C_{snow} C_{soil} d_{top}}{C_{snow} d_{soil} + C_{soil} d_{snow}}$$

The atmospheric and surface temperature equations are simultaneously solved. Daily computation is necessary, because the orbital cycle as well as processes of snow accumulation and melting have a strong seasonal imprint (Pollard, 1983). The meridional heat transport (ΔF_{EO}) accounts for the coupling between the boxes, and is proportional to the temperature gradient based on the diffusion approximation (Sellers, 1970; North, 1975). The atmospheric temperatures, and also the surface temperatures, are further extrapolated towards their altitudes (h_{sfc}) according to the prescribed lapse rate, Γ_{lapse}:

$$T_s = T_a + \Gamma_{lapse} h_{sfc}(r)$$

A2 Mass balance

The mass balance is solved cumulatively on a daily basis. The specific mass balance, the total amount of accumulation or ablation (per latitude) within one year, possibly reduced by (surface or bottom) melting, evaporation or calving, is annually added to or subtracted from the snow/ice-sheet.
Table A1. List and description of constant parameters.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_p</td>
<td>Planetary emissivity</td>
<td>0.61 (15° S) – 0.66 (45° S) – 0.69 (75° S) –</td>
<td>–</td>
</tr>
<tr>
<td>ε_{11}</td>
<td>Emissivity constant (Sellers, 1970)</td>
<td>0.05 –</td>
<td>–</td>
</tr>
<tr>
<td>ε_2</td>
<td>Emissivity constant (Jentsch, 1987)</td>
<td>0.30 –</td>
<td>–</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant</td>
<td>5.67 x 10^{-8}</td>
<td>W m^{-2} K^{-4}</td>
</tr>
<tr>
<td>τ</td>
<td>Atmospheric transmissivity (Wang and Mysak, 2000)</td>
<td>0.65 –</td>
<td>–</td>
</tr>
<tr>
<td>λ</td>
<td>Heat exchange coefficient</td>
<td>10.0</td>
<td>W m^{-2} K^{-1}</td>
</tr>
<tr>
<td>k_1</td>
<td>Thermal conductance of snow</td>
<td>0.31</td>
<td>W m^{-1} K^{-1}</td>
</tr>
<tr>
<td>Δz_1</td>
<td>Depth range of subsurface conduction</td>
<td>3.0</td>
<td>m</td>
</tr>
<tr>
<td>ρ_{air}</td>
<td>Density of air</td>
<td>1.2</td>
<td>kg m^{-3}</td>
</tr>
<tr>
<td>ρ_{ice}</td>
<td>Density of ice</td>
<td>910</td>
<td>kg m^{-3}</td>
</tr>
<tr>
<td>ρ_{w}</td>
<td>Density of water</td>
<td>1000</td>
<td>kg m^{-3}</td>
</tr>
<tr>
<td>C_{DE}</td>
<td>Exchange coefficient for latent heat</td>
<td>1.0 x 10^{-3} –</td>
<td>–</td>
</tr>
<tr>
<td>U</td>
<td>Wind speed</td>
<td>5.0</td>
<td>m s^{-1}</td>
</tr>
<tr>
<td>q_{s}^*</td>
<td>Sea surface specific humidity</td>
<td>0.8 x 10^{-3}</td>
<td>kg kg^{-1}</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity (Bintanja, 1999, p. 122)</td>
<td>0.75 –</td>
<td>–</td>
</tr>
<tr>
<td>B_e</td>
<td>Equilibrium Bowen ratio</td>
<td>2.0 –</td>
<td>–</td>
</tr>
<tr>
<td>R_{air}</td>
<td>Gas constant for dry air</td>
<td>287.04 J kg^{-1} K^{-1} yr^{-1}</td>
<td>–</td>
</tr>
<tr>
<td>Γ_{lapse}</td>
<td>Atmospheric temperature lapse rate</td>
<td>1.0 x 10^{-3}</td>
<td>–</td>
</tr>
<tr>
<td>L_v</td>
<td>Latent heat of vaporization of ice</td>
<td>2.26 x 10^6</td>
<td>J kg^{-1}</td>
</tr>
<tr>
<td>L_m</td>
<td>Latent heat of melting of ice</td>
<td>0.334 x 10^6</td>
<td>J kg^{-1}</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat capacity of dry air</td>
<td>1005</td>
<td>J kg^{-1} K^{-1}</td>
</tr>
<tr>
<td>C_{ice}</td>
<td>Specific heat capacity of ice</td>
<td>2009</td>
<td>J kg^{-1} K^{-1}</td>
</tr>
<tr>
<td>d_{top}</td>
<td>Affected snow/soil layer</td>
<td>0.2</td>
<td>m</td>
</tr>
<tr>
<td>c_{at}</td>
<td>Precipitation constant</td>
<td>4.44 x 10^{-4}</td>
<td>m day^{-1}</td>
</tr>
<tr>
<td>c_p</td>
<td>Precipitation constant</td>
<td>1.9569 x 10^{-9}</td>
<td>day^{-1}</td>
</tr>
<tr>
<td>c_d</td>
<td>Precipitation constant</td>
<td>3000.0</td>
<td>m</td>
</tr>
<tr>
<td>κ</td>
<td>Precipitation dependence on temperature</td>
<td>0.0345</td>
<td>K^{-1}</td>
</tr>
<tr>
<td>A_{snow}</td>
<td>Tangent hyperbolicus constant</td>
<td>50 –</td>
<td>–</td>
</tr>
<tr>
<td>B_{snow}</td>
<td>Tangent hyperbolicus constant</td>
<td>0.05 –</td>
<td>–</td>
</tr>
<tr>
<td>c_{bal}</td>
<td>Calving constant</td>
<td>2</td>
<td>m yr^{-1}</td>
</tr>
<tr>
<td>α_{snow}</td>
<td>Albedo of snow</td>
<td>0.75 –</td>
<td>–</td>
</tr>
<tr>
<td>α_{ice}</td>
<td>Albedo of ice</td>
<td>0.35 –</td>
<td>–</td>
</tr>
<tr>
<td>α_{seaice}</td>
<td>Albedo of seaice</td>
<td>0.60 –</td>
<td>–</td>
</tr>
<tr>
<td>α_{land}</td>
<td>Albedo of land</td>
<td>0.30 –</td>
<td>–</td>
</tr>
<tr>
<td>α_{w}</td>
<td>Albedo of ocean water</td>
<td>0.10 –</td>
<td>–</td>
</tr>
<tr>
<td>x_0</td>
<td>Constant for sea-ice extent</td>
<td>2.1 –</td>
<td>–</td>
</tr>
<tr>
<td>x_1</td>
<td>Constant for sea-ice extent</td>
<td>0.6 –</td>
<td>–</td>
</tr>
<tr>
<td>T_{pd}</td>
<td>Temperature constant for sea-ice extent</td>
<td>-41 °C</td>
<td>–</td>
</tr>
<tr>
<td>C_{si}</td>
<td>Latitudinal shift constant for sea-ice extent</td>
<td>19</td>
<td>°</td>
</tr>
</tbody>
</table>

The ice sheet is allowed to grow into the surrounding ocean as long as it is hydrostatically floating. When the total weight of the ice column exceeds the floating criteria, calving occurs (Pollard, 1982) and the total mass balance (G) will be set to a negative value (c_{bal}):

\[
G = c_{\text{bal}} \text{ if } \rho_{\text{air}} h_{\text{ice}} < \rho_{\text{w}} (h_{\text{atm}} - h_{\text{ice}})
\]

where ρ_{ice} and ρ_{w} are the densities of ice and water, respectively, h_{ice} is the ice thickness, and h_{atm}, the elevation of the surface with respect to the current sea level, which is taken as a constant reference level. This crude calving parameterization also accounts for occurrence of proglacial lakes and/or marine incursions (Pollard, 1982).

Bottom melting (S) occurs when the temperature in the basal layer (T_{base}) exceeds the pressure melting point (T_{pmp}):

\[
S = \frac{C_{\text{ice}}}{L_m} (T_{\text{base}} - T_{\text{pmp}}) \frac{\Delta z_{\text{base}}}{\Delta t}
\]
where \(C_{\text{ice}} \) is the specific heat of ice and \(L_m \) the specific latent heat of fusion of ice and \(\Delta z_{\text{base}} \) the thickness of the basal layer.

A3 Albedo

A separate snow balance is computed to parameterize the surface albedo. The formulas for this cumulative balance resemble the previous surface mass and energy balance equations, except for the fact that the snow depth cannot become negative. The daily derived surface albedo \((\alpha_s)\) depends on the snow depth \((d_{\text{snow}})\), when the snow layer is thicker than 10 cm:

\[
\alpha = \frac{\alpha_{\text{snow}} + \alpha_{\text{ice}}}{2} + \frac{\alpha_{\text{snow}} - \alpha_{\text{ice}}}{2} \tanh(A_{\text{snow}}(d_{\text{snow}} - B_{\text{snow}}))
\]

where the slope \((A_{\text{snow}})\) and shift \((A_{\text{snow}})\) are constant and \(\alpha_{\text{snow}}\) and \(\alpha_{\text{ice}}\) are the albedos of snow and ice, respectively. When there is less or no ice/snow, the land, ocean (low and middle latitude boxes) or sea-ice albedos (high latitude box) are used. The latitudinal extent of sea-ice \((\text{lat}_{\text{si}})\) is given by (Jentsch, 1987):

\[
\text{lat}_{\text{si}} = \sin^{-1}[(\tanh(x_0) - 1) - C_{\text{si}}]
\]

where \(x_0\) and \(x_1\) are tuning constants, \(T_{pd}\) a measure for the present-day value of sea-water temperature and \(C_{\text{si}}\) a latitudinal shift.

The planetary \((\alpha_p)\) and atmospheric \((\alpha_a)\) albedos are parameterized as functions of latitude (Wang and Mysak, 2000):

\[
\alpha_p = 0.6 - 0.4 \cos(\text{lat}) \quad \alpha_a = 0.3 - 0.1 \sin(\text{lat})
\]

A4 Greenhouse effect

The longwave radiation constant \(\epsilon_1\) accounts for the greenhouse effect due to \(p\text{CO}_2\) and other greenhouse gases:

\[
\epsilon_1 = \epsilon_{10} + \epsilon_{11} \sqrt{\epsilon'}
\]

where, \(\epsilon'\) is the atmospheric vapor pressure, related to the saturation specific humidity \((q_{\text{sat}})\) and relative humidity \((\text{RH})\):

\[
\epsilon' = 1.6 \times 10^3 \text{RH} q_{\text{sat}}
\]

where:

\[
q_{\text{sat}} = \frac{1.57 \times 10^{11}}{\rho_{\text{air}} R_{\text{air}} T_a} e^{-\frac{S_{\text{sat}}}{T_a}}
\]

with \(R_{\text{air}}\) being the gas constant for dry air.

According to Staley and Jurica (1970) and Jentsch (1991), the \(\text{CO}_2\)-emission factor can be parameterized by:

\[
\epsilon_{10} = 0.1 + 0.025 \ln(\text{CO}_2).
\]

The other main greenhouse gas, water vapor (H\(_2\)O), also contributes about half to the (present-day) greenhouse effect. Because of the fact that we do not explicitly compute the hydrological cycle, this feedback can not be parameterized separately. To still include the effect of water vapor, we increased the climate sensitivity to \(p\text{CO}_2\) Eq. (A2) is therefore expanded and retuned to:

\[
\epsilon_{10} = \epsilon_{10}^\text{CO}_2 + \epsilon_{10}^\text{H}_2\text{O} = 0.27 + 0.05 \ln(\text{CO}_2).
\]

A doubling of atmospheric \(\text{CO}_2\) results in a climate sensitivity of 2.5°C and modeled present-day ice-sheet size, accumulation and temperature distribution are similar to estimates (Huỳbrechts et al., 2000; Oerlemans, 2002).

A5 List of constant parameters

Table A1 gives an overview of the parameters used in the ice sheet-climate model.

Acknowledgements. This project was funded by the DFG (Deutsche Forschungsgemeinschaft) within the European Graduate College “Proxies in Earth History”. We thank the three anonymous reviewers and the editor for their constructive comments.

Edited by: E. W. Wolff

References

Flower, B. P. and Kennett, J. P.: Middle Miocene deep-water palaeoceanography in the Southwest Pacific relations with East Antarctic ice-sheet development, Paleoceanography, 10, 1095–1112, 1995.

Schrag, D. P., Hampt, G., and Murray, D. W.: Pore fluid con-