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Abstract. A brief (∼150 kyr) period of widespread global
average surface warming marks the transition between the
Paleocene and Eocene epochs,∼56 million years ago. This
so-called “Paleocene-Eocene thermal maximum” (PETM) is
associated with the massive injection of13C-depleted carbon,
reflected in a negative carbon isotope excursion (CIE). Bi-
otic responses include a global abundance peak (acme) of the
subtropical dinoflagellateApectodinium. Here we identify
the PETM in a marine sedimentary sequence deposited on
the East Tasman Plateau at Ocean Drilling Program (ODP)
Site 1172 and show, based on the organic paleothermome-
ter TEX86, that southwest Pacific sea surface temperatures
increased from∼26◦C to ∼ 33◦C during the PETM. Such
temperatures before, during and after the PETM are>10◦C
warmer than predicted by paleoclimate model simulations
for this latitude. In part, this discrepancy may be explained
by potential seasonal biases in the TEX86 proxy in polar
oceans. Additionally, the data suggest that not only Arctic,
but also Antarctic temperatures may be underestimated in
simulations of ancient greenhouse climates by current gen-
eration fully coupled climate models. An early influx of
abundantApectodiniumconfirms that environmental change
preceded the CIE on a global scale. Organic dinoflagellate
cyst assemblages suggest a local decrease in the amount of
river run off reaching the core site during the PETM, possi-
bly in concert with eustatic rise. Moreover, the assemblages
suggest changes in seasonality of the regional hydrological
system and storm activity. Finally, significant variation in
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dinoflagellate cyst assemblages during the PETM indicates
that southwest Pacific climates varied significantly over time
scales of 103 – 104 years during this event, a finding compa-
rable to similar studies of PETM successions from the New
Jersey Shelf.

1 Introduction

Gradual widespread warming initiated in the late Paleocene
(∼59 Ma) and culminated in the Early Eocene Climatic Op-
timum (EECO; 52–50 Ma) (e.g., Adams et al., 1990; Zachos
et al., 2001; Bijl et al., 2009). Superimposed on this long-
term warming trend, at least four “hyperthermals” occurred,
which represent relatively brief (<200 kyr) intervals charac-
terized by anomalously high temperatures (e.g., Bowen et al.,
2006; Sluijs et al., 2007a). The Paleocene-Eocene Thermal
Maximum is the most prominent and best-studied hyperther-
mal and is marked by a negative carbon isotope excursion
(CIE) in sedimentary components of 2.5–8‰, depending on
analyzed substrate, location and completeness of the section
(Kennett and Stott, 1991; Koch et al., 1992; Schouten et
al., 2007b). Moreover, massive dissolution of biogenic car-
bonates occurred in deep ocean basins (e.g., Zachos et al.,
2005; Zeebe and Zachos, 2007). The CIE and carbonate dis-
solution are consistent with geologically rapid, massive in-
jections of13C-depleted carbon into the ocean-atmosphere
system (Dickens et al., 1997; Panchuk et al., 2008; Zeebe
et al., 2009), although the mechanism for such release re-
mains controversial (Dickens et al., 1995; Kurtz et al., 2003;
Svensen et al., 2004).
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Fig. 1. Tectonic reconstruction of the southwest Pacific region for
the earliest Eocene, with East Antarctica held fixed, illustrating
modern continents (green), areas shallower than 3000 m (blue) and
locations of ODP Site 1172 and other sites discussed in the text.
ETP = East Tasman Plateau, STR = South Tasman Rise. The figure
is modified from Cande and Stock (2004).

Stable oxygen isotope (δ18O) and Mg/Ca studies on plank-
tonic foraminifera from deep-sea sediments indicate a 5–8◦C
surface warming during the PETM (Kennett and Stott, 1991;
Thomas et al., 2002; Zachos et al., 2003). Reconstruction of
absolute sea surface temperatures (SST) from such sections
has been problematic because of post-sedimentary recrys-
tallization of planktonic foraminifera (Schrag et al., 1995;
Pearson et al., 2001). Additionally, reduced pH may have
dampened foraminiferδ18O excursions, potentially result-
ing in too low estimates of PETM warming (Uchikawa and
Zeebe, 2010). More recently, the application of organic pa-
leothermometers, such as TEX86 and MBT/CBT in marginal
marine sequences provided estimates of absolute tempera-
ture evolution across the PETM and other hyperthermals in
the Northern Hemisphere (e.g., Sluijs et al., 2006; Zachos
et al., 2006; Weijers et al., 2007). This work showed ex-
ceptionally high Arctic temperatures during this time inter-
val, suggesting very low meridional temperature gradients
(Sluijs et al., 2006). The marginal marine sections used in
these studies have also revealed significant increases in river
discharge and sediment input (e.g., Crouch et al., 2003; Gius-
berti et al., 2007; John et al., 2008; Sluijs et al., 2008b; for
an overview see Sluijs et al., 2008a), changes in trophic level
(e.g., Crouch et al., 2001; Speijer and Wagner, 2002; Gibbs
et al., 2006), as well as a globally recorded rise in sea level
(Sluijs et al., 2008a). However, temperature and paleoeco-
logical data from marginal marine PETM sections from the
Southern Hemisphere are rare (Crouch et al., 2001; Crouch
and Brinkhuis, 2005), and none are available from the south-
ern high latitudes, hampering thorough evaluation of climatic
change in the sub-Antarctic realm.

We have generated geochemical and palynological data
through upper Paleocene – lower Eocene sediments recov-
ered during Ocean Drilling Program (ODP) Leg 189 at Site
1172 on the East Tasman Plateau, deposited at∼65◦ S pale-
olatitude (Exon et al., 2004) (Fig. 1). Micropaleontological
information from the southwest Pacific showed that this site
was located within the Antarctic-derived, northward flowing
Tasman Current throughout the Paleogene, which is consis-
tent with general circulation model experiments (Huber et
al., 2004; Hollis et al., 2009). In an earlier study, based on
initial shipboard samples we suggested that the PETM might
not have been recovered at this site (Röhl et al., 2004). Here,
we identify a condensed PETM section on the basis of a neg-
ative CIE in organic matter within magnetochron C24r. We
perform TEX86, dinoflagellate cyst assemblage analyses and
X-ray fluorescence (XRF) core scanning in order to recon-
struct paleoenvironmental conditions at southern high lati-
tudes across the PETM.

2 Material and methods

2.1 Material

Sediments of late Paleocene and early Eocene age at Site
1172, Hole 1172D, consist mainly of organic-rich green and
gray clay- and siltstones with low abundance of calcare-
ous and siliceous microfossils, but high abundance of paly-
nomorphs (notably dinocysts but also terrestrial pollen and
spores). Glauconite and accessory minerals are recorded in
varying abundance (Shipboard Scientific Party, 2001), with
the glauconite grains being irregular and angular, which in-
dicates that glauconite was formed in situ (based on thin sec-
tions, personal observation, not shown). Lithological and pa-
lynological information suggests an overall very shallow ma-
rine depositional setting with marked runoff from the nearby
shores (Shipboard Scientific Party, 2001; Röhl et al., 2004).

Integrated dinoflagellate cyst and magnetostratigraphic
studies identified Chrons C25n, C24r and C24n, with the top
of Chron C25n at 618.00 rmbsf and the onset of Chron C24n
at 594.2 rmbsf (Fuller and Touchard, 2004; Stickley et al.,
2004; Bijl et al., 2009). Average sedimentation rates implied
by this age model are 5.7 m/Myr, when assuming a duration
of 3.1 Ma for Chron C24r (Westerhold et al., 2007).

2.2 Methods

The archive halves of Core 189-1172D-15R were subject
to XRF Core Scanning. Subsequently, half-splits of these
archive halves were sampled on a resolution of 1 to 2 cm, af-
ter which samples were freeze-dried. Splits of samples were
then taken for palynology and organic geochemistry. All raw
data are provided online in a supplementary data table.
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2.2.1 X-ray fluorescence (XRF) Core Scanning

We measured the elemental composition of sediments from
Cores ODP 189-1172D-15R to -17R at the MARUM, Bremen
University, Germany, using the XRF core scanner (Richter
et al., 2006; Tjallingii et al., 2007). The XRF core scan-
ner acquires bulk-sediment chemical data from split core sur-
faces. Although measured elemental intensities are predomi-
nantly proportional to concentration, they are also influenced
by the energy level of the X-ray source, count time, and
physical properties of the sediment (Röhl and Abrams, 2000;
Tjallingii et al., 2007). XRF data were collected every cm
down-core over a 1 cm2 area using 30 s count time. We used
a generator setting of 20 kV and an X-ray current of 0.15 mA.

2.2.2 Palynology

Samples of 1–2 cm stratigraphic thickness were freeze-dried
and a known amount ofLycopodiumspores was added to
∼4 g of material. Samples were then treated with 30%
HCl and twice with 38% HF for carbonate and silicate re-
moval, respectively. Residues were sieved using a 15-µm
nylon mesh to remove small particles. To break up clumps
of residue, the sample was placed in an ultrasonic bath for
a maximum of 5 min, sieved again, and subsequently con-
centrated into 1 ml of glycerine water, of which 10 µl was
mounted on microscope slides. Slides were counted for
marine (e.g., dinocysts) and terrestrial palynomorphs (e.g.,
pollen and spores) to a minimum of 200 dinocysts. Marine
and terrestrial palynomorph preservation was excellent for
all samples. We generally follow dinocyst taxonomy of Fen-
some and Williams (2004), but follow Sluijs et al. (2009a)
for the various spiny peridinioid taxa. Absolute quantitative
numbers were counted using the relative abundance ofLy-
copodiumspores (cf., Stockmarr, 1972).

2.2.3 Organic geochemistry

For stable carbon isotope analyses of total organic carbon
(δ13CTOC), freeze-dried samples were powdered, treated
with 1M HCl to remove carbonate, centrifuged and the su-
pernatant decanted, followed by two rinses with demineral-
ized water and freeze-dried again. Residues were analyzed
with a Fison NA 1500 CNS analyzer coupled to a Finnigan
Delta Plus isotope ration mass spectrometer. Analytical pre-
cision and accuracy were determined by replicate analyses
and by comparison with in-house standards, and were better
than 0.1‰ and 0.1‰, respectively.

For biomarker analyses, freeze-dried sediment samples
(∼3.5 g dry mass) were extracted with dichloromethane
(DCM)/methanol (2:1) using accelerated solvent extraction
(Dionex ACE). The extracts were separated by Al2O3 col-
umn chromatography using hexane/DCM (9:1, v/v) and
DCM/methanol (1:1, v/v) to yield the apolar and polar frac-
tions, respectively. The polar fractions were analyzed using

high performance liquid chromatography/atmospheric pres-
sure chemical ionization-mass spectrometry, according to
Schouten et al. (2007a). Single ion monitoring was used
to quantify the abundance of the Glycerol Dialkyl Glycerol
Tetraether (GDGT) lipids. The relative abundance of GDGTs
were used to calculate TEX86 (Schouten et al., 2002). TEX86
is converted to mean annual SST by means of quasi-global
core top calibrations. A new calibration with a logarithmic
function was recently published (Kim et al., 2010), which
is based on the currently available core-top data and a thor-
ough statistical analyses between GDGTs abundances and
SST. An earlier calibration assumes a different logarithmic
relation (Liu et al., 2009) that produces particularly differ-
ent SSTs for high TEX86 values. We also determined the
Branched and Isoprenoid Tetraether (BIT) index. This is a ra-
tio between soil bacteria-derived and marine crenarchaeota-
derived membrane lipids, and serves as a proxy for the rel-
ative amount of river transported soil organic matter versus
marine organic matter (Hopmans et al., 2004).

2.2.4 Core depth adjustments

Based on correlations between physical properties data gen-
erated on core material and down hole logging, we have
slightly changed the meters below sea floor (mbsf) depth of
the core sediments in a recent paper (Bijl et al., 2009). We
use revised mbsf (rmbsf) for these revised depths through-
out. Relative to mbsf, Core 189-1172D-12R was shifted up
by 0.36 m, 13R down by 1.87 m, 14R down by 2.84 m, 15R
down by 2.4 m, 16R down by 2.57 m and 17R and 18R down
by 2.66 m (see also supplementary data table).

3 Results

3.1 Stratigraphy

Between 611.89 and 611.86 rmbsf, theδ13CTOC curve shows
a ∼3‰ negative step from−26 to −29‰, followed by a
∼20 cm interval of relatively stable values, and a subse-
quent exponential recovery that reaches background values
between 611.2 and 611.0 rmbsf (Fig. 2). This excursion is
located within magnetochron C24r. Average sedimentation
rates of 5.7 m/Myrs for this chron (see Material) imply that
this excursion occurred∼1 Ma after the termination of Chron
C25n (Fuller and Touchard, 2004; Bijl et al., 2009) and∼2
Ma between this CIE and the onset of Chron C24n. The or-
bitally based age model from Blake Nose (ODP Leg 171B)
and Walvis Ridge (ODP Leg 208) also indicates∼1 Ma be-
tween the top of Chron C25n and the PETM (Norris and
Röhl, 1999), and∼2 Ma between the PETM and the onset of
Chron C24n (Westerhold et al., 2007). The onset of Eocene
Thermal Maximum 2 occurred∼150 kyrs prior to the rever-
sal of Chron C24r to C24n.3n, which is inconsistent with the
location of the recorded CIE. Rather, the overall stratigraphic
position of the CIE implies the presence of the PETM in Core
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Fig. 2. Core recovery and stratigraphic summary of the uppermost
Paleocene to earliest Eocene at ODP Site 1172. Note that the core
depths are in revised meters below sea floor (rmbsf; see text). Mag-
netostratigraphic interpretation is from Bijl et al. (2009), which dif-
fers from the interpretations published in the first post-cruise papers
(Fuller and Touchard, 2004; Röhl et al., 2004) in the assignment
of normal polarity intervals to Chrons C25n and C26n. Magnetic
susceptibility record represents shipboard data (Shipboard Scien-
tific Party, 2001). Stable carbon isotope (δ13C) values of total or-
ganic carbon (TOC) across the PETM are expressed relative to the
Vienna Pee Dee Belemnite standard. Error bars reflect duplicate-
based standard deviations and three grey data points are considered
outliers because duplicate analyses indicated values consistent with
surrounding samples. The figure is modified from Cande and Stock
(2004).

1172D-15R. The thickness of the CIE at Site 1172 is 65–
90 cm, depending on the definition of its termination (Röhl
et al., 2007). Assuming a 170 kyr duration of the CIE (Röhl
et al., 2007; Abdul Aziz et al., 2008), this indicates aver-
age PETM sedimentation rates of∼0.4–0.5 cm/kyr, although
sediment accumulation rates were likely highly variable in
this pro-deltaic setting.

3.2 TEX86 and BIT

Late Paleocene SSTs average∼26◦C (1σ = 0.9) based on
TEX86, regardless of the applied calibration (Fig. 2). Con-
comitantly with the onset of the CIE, SSTs rise to average
PETM values of∼31◦C (1σ = 0.7) following KIM2010, or
∼29◦C for LIU2009 with peak values of almost 33◦C and
31◦C for the two calibrations, respectively, at 611.70 rmbsf.
The magnitude of PETM warming was thus∼7◦C with
KIM2010 and 4◦C with LIU2009. SSTs returned to pre-
excursion values during the recovery of the CIE. The warm-

ing and the CIE are preceded by two samples with relatively
low temperatures (∼25◦C).

BIT values are low throughout the analyzed interval, in-
dicating that TEX86 values are not influenced by soil de-
rived GDGTs (Weijers et al., 2006). The BIT record exhibits
some scatter, but values during the PETM (0.09± 0.02) are
on average somewhat lower than before and after the PETM
(0.13± 0.03), suggesting increased marine production of iso-
prenoid GDGTs or a decreased supply of soil organic matter.

3.3 Palynology

Palynological assemblages are rich, well preserved and dom-
inated by dinoflagellate cysts (dinocysts). Terrestrial pollen
and spores are common to abundant throughout, with rela-
tively high abundances within the PETM (Figs. 2, 3). Strati-
graphically important dinocyst taxa includeApectodinium
spp., Eocladopyxis peniculatum, Deflandreaspp., Meli-
tasphaeridium pseudorecurvatum, Muratodinium fimbriatum
and the recently described speciesFlorentinia reichartii
(Sluijs and Brinkhuis, 2009). In particular, the oldest abun-
dant occurrence (>40% of the assemblage) ofApectodinium
in the southwest Pacific Ocean has been calibrated to the
PETM (Crouch, 2001). At Site 1172, however, the First Oc-
currence (FO) of abundantApectodiniumis at∼612.6 rmbsf,
∼75 cm below the onset of the CIE (Fig. 3).Apectodinium
abundances subsequently decrease to∼2%, followed by a
second abundance maximum starting at the onset of the CIE.

Along with Apectodiniumspp., other quantitatively sig-
nificant taxa in the assemblage mostly comprise cosmopoli-
tan taxa such asSenegaliniumspp.,Glaphyrocystaspp.,Eo-
cladopyxis peniculatum, Cordosphaeridium fibrospinosum,
Thalassiphoraspp.,Kenleyiaspp.,Fibrocystaspp. (and other
members of theCordosphaeridium fibrospinosumcomplex
(sensu, Sluijs and Brinkhuis, 2009),Diphyes colligerum,
Paucisphaeridium, Deflandrea(and a few relatedCero-
dinium), Membranosphaera(often referred to asElytro-
cysta in the Southern Ocean), andSpiniferitesspp.Hystri-
chosphaeridium truswelliae, common in certain intervals,
was long thought to have been endemic to the Antarctic
Realm, but was recently recorded in uppermost Paleocene
and PETM sediments on the New Jersey Shelf (Sluijs and
Brinkhuis, 2009). In fact, PETM assemblages as a whole
are strikingly similar to those reported from the New Jersey
Shelf. Only few aspects of the assemblages are typical for the
Antarctic Realm (e.g., Wrenn and Beckmann, 1982; Warnaar
et al., 2009), including rareVozzhennikoviaspp., and tempo-
rally abundantPyxidinopsisspp.

Senegaliniumspp. dominate assemblages from the base of
the studied section (∼615 rmbsf) up to∼613 rmbsf, an in-
terval with very stable dinocyst assemblages with common
Pyxidinopsis, Spiniferites, andDeflandreaspp. Assemblages
are slightly richer above∼613 rmbsf, with more abundant
Pyxidinopsisspp. and commonH. truswelliaeandMembra-
nosphaeraspp. A peak inGlaphyrocystaspp. occurs around
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Fig. 3. Organic geochemical, palynological and XRF results across the PETM of ODP Site 1172. From left to right: stable carbon isotope
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613 rmbsf, directly followed by the firstApectodiniumacme.
Between 612.2 and 611.9 rmbsf, just below the onset of the
CIE, successive transient abundances ofGlaphyrocysta, De-
flandrea, Pyxidinopsis, andOperculodiniumspp., andC. fi-
brospinosumcomplex occur. A second acme ofApecto-
dinium is recorded concomitant with the CIE. Within the
CIE, transient abundances ofGlaphyrocystaspp. andEo-
cladopyxis peniculatumoccur. After the CIE,Senegalinium
dominates assemblages again, whileOperculodiniumspp.,
H. truswelliaeandMembranosphaeraspp. are common.

3.4 XRF

Fe and Ca intensities exhibit a characteristic variability that
can be directly attributed to lithology (Fig. 2). The sedi-
ments at this site are composed of clay- and siltstones with
low abundance of CaCO3 (<0.3%), between∼0.5–1% TOC,
pyrityzed diatoms, glauconite, accessory minerals in chang-
ing abundance, including varying amounts of quartz (Ship-
board Scientific Party, 2001). The dominant lithology is ex-
pressed as generally low Ca values in the XRF scans, but
the Ca in these sediments is related to carbonate (Röhl et
al., 2004). Ca values are higher in the lower part of Core
15R, just three meters below the PETM (Fig. 2). These rela-
tively higher carbonate contents, reflecting higher abundance

of nannofossils, are in line with a shallow marine environ-
ment, but compared to the sediments below and above a rel-
atively deeper depositional environment. The Ca intensities
in this interval of Core 15R show regular fluctuations: about
four cycles below the onset of the PETM, which may also
be present in the BIT index, the TEX86 sea surface temper-
ature data, and reversely in the percentage of terrestrial pa-
lynomorphs. Assuming an average sedimentation rate of 5.7
m/Myrs these cycles could represent the low eccentricity fre-
quency of the Milankovitch orbital band (100-kyr cycles). Ca
values exhibit peak values during the warming of the PETM,
followed by the lowest Ca values in the interval (611.56–
610.57 rmbsf) (Fig. 2). Ca and Fe are often closely anti-
correlated in the pelagic realm, e.g., at ODP Sites 690 and
1263, because abundances of these elements are both forced
by carbonate export and preservation (Röhl et al., 2007). Al-
though the Fe and Ca intensities are overall anti-correlated
during the PETM at Site 1172 (611.2–611.9 mbsf) their re-
lation is not as strong as in the deep sea. The Fe record ex-
hibits maximum values (broad peak) in the upper part of the
CIE, where the Ca values are lower and the terrestrial pa-
lynomorphs show maximum values. This indicates that the
abundances of these elements are not controlled by carbonate
dissolution, as expected for this shallow marine setting (Röhl
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et al., 2004), but rather by the sediment supply from land and
marine biogeochemical cycling. Indeed, it suggests that the
relation of these two main elements Ca and Fe is driven by
minor (Milankovitch-driven) variations in clay mineralogy in
combination with very low carbonate contents. Ca values
stay low above the PETM. In general, for the long-term Site
1172 record including Core 15R, Ca and Fe do not particu-
larly anti-correlate on a larger scale. This is partly caused by
the relatively high amount of silica in the sediments in ad-
dition to carbonate (Ca) and clay (Fe), which disturbed the
perhaps expected anti-correlation of Ca and Fe.

4 Discussion

4.1 The carbon isotope excursion

The magnitude (∼3‰) of the CIE recorded at Site 1172 is
similar to or slightly smaller than the 4–5‰ often recorded
in δ13CTOC at other marine sites (Kaiho et al., 1996; Bolle et
al., 2000; Crouch et al., 2001; Steurbaut et al., 2003; Sluijs et
al., 2006). Since the lowestδ13C values for most carbon iso-
tope records across the PETM are located close to the onset
of the event (e.g., Bowen et al., 2001; Thomas et al., 2002;
Sluijs et al., 2007a), this could imply that the earliest part
of the PETM is not represented in our record. Alternatively,
the seemingly damped magnitude of the excursion may be
caused by changing sources of organic matter as hypothe-
sized for the small CIE at Tawanui, New Zealand (Crouch
et al., 2003), but our palynological analyses do not support
major changes in organic matter composition (Figs. 2, 3).
Globally, mostδ13C curves from the PETM show a rapid
drop at the onset, which probably took less than 10 000 years.
Subsequently, some bulk carbonate and bulk organic carbon
records suggest a slower, sometimes stepwise, continued de-
cline that may span several tens of thousands of years (e.g.,
Bains et al., 1999; Nicolo et al., 2011). In other records, no-
tably those of single specimen foraminifera, the first negative
step is directly followed by∼80 kyr of stable carbon isotope
values and subsequent recovery that is also recorded in the
bulk records, often referred to as the “body” of the CIE (e.g.,
Thomas et al., 2002; McCarren et al., 2009). Our record
clearly shows an interval of stable values of around−29‰
between∼611.9–611.7 rmbsf, implying that at least part of
the stable peak phase is represented in the record. In fact, the
magnitude of the CIE in our record is very close to the−3 to
−3.5‰ that is generally assumed to have been the excursion
in the global exogenic carbon (Zachos et al., 2007; McCar-
ren et al., 2009). Hence, the record at Site 1172 appears to
contain at least a large part of the “body” of the CIE as well
as the recovery, allowing comparison to other PETM sites.

4.2 Sea surface temperature evolution

4.2.1 Magnitude of PETM warming

The range of SST estimates based on TEX86 is slightly dif-
ferent for the two applied calibrations; LIU2009 gives rela-
tively low temperature estimates and implies a very low sen-
sitivity for TEX86 values at temperatures>30◦C. In contrast,
KIM2010 implies a higher sensitivity and absolute tempera-
ture estimates (Fig. 2). In the New Jersey PETM records for
example, the KIM2010 is most consistent with mixed layer
planktonic foraminifer stable oxygen isotope (δ18O) pale-
othermometry (Kim et al., 2010), also regarding the magni-
tude of warming. Because the awkwardly low sensitivity of
the LIU2009 calibration, and decent multi-proxy intercom-
parison we prefer the magnitude of warming implied by the
KIM2010 calibration in this upper range of TEX86 values.

A warming of∼7◦C is similar to or slightly less than the
only other Southern Ocean estimates from the Weddell Sea
(Sites 689 and 690 at Maud Rise), based on theδ18O excur-
sion in the surface dwelling foraminiferAcarinina (Thomas
et al., 2002; Zachos et al., 2007). The magnitude of the SST
rise is also similar to that recorded at marginal marine sites
on the New Jersey Shelf based on foraminiferalδ18O and
TEX86 (Zachos et al., 2006; Sluijs et al., 2007b; John et al.,
2008). However, the magnitude of warming was smaller in
open-ocean and continental settings, and in the Arctic (e.g.,
Thomas and Shackleton, 1996; Zachos et al., 2003; Tripati
and Elderfield, 2005; Wing et al., 2005; Sluijs et al., 2006;
Weijers et al., 2007). This suggests that, while the Arctic
warmed with a magnitude comparable to the global average
(Sluijs et al., 2006), some marginal marine regions warmed
slightly more and some polar amplification may have oc-
curred in the Southern Hemisphere. If so, this amplification
may have been caused by three mechanisms. First, the melt-
ing of small ice sheets on high mountains in Antarctica may
have reduced albedo and thus amplified Antarctic warming.
This would be consistent with the reconstructed PETM eu-
static rise (Sluijs et al., 2008a). Secondly, an increase in
atmospheric heat transport may have occurred. Indeed, in-
creased precipitation in Southern Hemisphere PETM records
would suggest more latent heat transport from tropical re-
gions to the Antarctic (Robert and Kennett, 1994; Crouch et
al., 2003). However, Arctic sections also exhibit evidence
for intensified regional hydrology (Pagani et al., 2006), but
no amplification of warming is recorded there (Sluijs et al.,
2006). Third, a change in ocean circulation during the PETM
may have resulted in regionally enhanced warming in the
southwest pacific and Weddell Sea.

4.2.2 Absolute Temperatures

Late Paleocene SSTs average∼26◦C for both the LIU2009
and KIM2010 calibrations (Fig. 2). Average PETM SSTs
are∼31◦C following KIM2010 and∼29◦C for LIU2009,
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Fig. 4. Palynological results across the PETM of Site 1172. Dinocyst abundances are reflected as the percentage of the total dinocyst
assemblage and the abundance of terrestrially derived palynomorphs as a percentage of total palynomorph sum. Goniodomids almost
exclusively representEocladopyxis peniculatum. Membranosphaerais often referred to asElytrocystain Southern Ocean literature. Grey
and black lines in the absolute quantitative dinocyst abundance panel reflect two different scales for illustration purposes.

with peak values of almost 33◦C and 31◦C for the two cali-
brations, respectively. Because of this calibration difference
and as these temperatures are outside the range of modern
SSTs, care should be taken in interpreting absolute PETM
SST values. Considering the uncertainties of the respective
calibrations, TEX86 indicates that maximum PETM SSTs at
Site 1172 were in the range between 29–34◦C.

Although TEX86 is calibrated to mean annual SST in the
modern ocean, like other proxies seasonal and depth biases
can occur with the TEX86 paleothermometer (Huguet et al.,
2007; Castaneda et al., 2010). The marine Crenarchaeota
(recently renamed Thaumarchaeota; Spang et al., 2010) cur-
rently mainly proliferate during winter in both the Arctic and
Antarctic oceans (Alonso-Saez et al., 2008; Kalanetra et al.,
2009). Likely, this is because most of them are chemoau-
totrophs (Wuchter et al., 2006a), living on ammonia and be-
ing not directly depending on light. Also in the present day
North Sea they preferentially grow during winter, low light
and no competition with algae for ammonia (Wuchter et al.,
2006a). Because Crenarcheota/Thaumarchaeota have low
kinetics for ammonia (Martens-Habbena et al., 2009), they
outcompete bacteria and algae at low ammonia concentra-
tions. These microbiological studies would thus imply that
the TEX86 signal may be even skewed towards winter tem-
peratures. However, the export of membrane lipids to the

sea floor is not necessarily a function of Thaumarchaeotal
cell abundance but rather of export through fecal pelleting
(Wakeham et al., 2003; Wuchter et al., 2006b). Because the
dominant season of export in Paleogene polar oceans was
likely summer, we previously suggested that TEX86 values
in such regions might be skewed towards summer tempera-
tures (Sluijs et al., 2006, 2008b; Bijl et al., 2009).

Multi-proxy comparison has indicated good correspon-
dence between TEX86 and the molecular MBT/CBT proxy
for continental air temperature across the PETM in the Arc-
tic (Weijers et al., 2007). Although direct comparison to
terrestrial reconstructions in the southwest Pacific is com-
plex, our temperatures are qualitatively consistent with dom-
inant angiosperm pollen in the Site 1172 record. Moreover,
records from New Zealand generally exhibit subtropical to
tropical floral incursions, including occurrences of the man-
grove palmNypa in the Taranaki, East Coast, and Canter-
bury Basins (e.g., Crouch and Visscher, 2003; Crouch et al.,
2005). In marine sections from New Zealand, TEX86 agrees
with foraminiferal stable oxygen isotope and Mg/Ca ratios in
the Eocene (Hollis et al., 2009; Creech et al., 2010). More-
over, TEX86 and UK ’37 yield similar SST estimates across
the Middle Eocene Climatic Optimum (∼40 Ma) at Site 1172
(Bijl et al., 2010). However, it should be noted that seasonal
biases cannot be excluded in any of these proxies. Oxygen
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isotope ratios of reputedly Eocene mollusks from Seymour
Island in coastal Antarctica indicate significantly cooler con-
ditions on the Antarctic shelf (Ivany et al., 2008). However,
it should be noted that these mollusks are relatively poorly
dated and may also be of Middle Eocene age. Neverthe-
less, if the mollusks are Early Eocene and theirδ18O values
yield reliable SST estimates, this might imply that TEX86 is
skewed towards summer temperatures. Moreover, tempera-
ture estimates for deep sea waters, which at time most likely
derived from Antarctic surface waters, are 10–15◦C cooler
than our SST estimates (Thomas and Shackleton, 1996; Tri-
pati and Elderfield, 2005; McCarren et al., 2009). Again, part
of this discrepancy can result from seasonal biases. The tem-
perature of deep waters most likely represents winter SST
along the Antarctic margin. Collectively, although with the
available data it remains impossible to exclude that TEX86
represents MAT, we consider it likely that the proxy is bi-
ased towards summer temperatures in the polar oceans of the
Paleogene.

Even if TEX86 temperatures are skewed towards summer
SST estimates, the values are surprisingly high for this lati-
tude, even with the conservative LIU2009 calibration. Pre-
PETM SSTs of∼26–27◦C and maximum PETM SSTs of
∼30–34◦C are only 3–6◦C cooler than on the New Jersey
Shelf at a paleolatitude of∼35–40◦N (Zachos et al., 2006;
Sluijs et al., 2007b), and∼8–12◦C warmer than those in the
Arctic (Sluijs et al., 2006) depending on the applied cali-
bration. Even if reflect maximum summer temperature esti-
mates, the difference with late Paleocene and early Eocene
SSTs 30–35◦C from Tanzania at∼17◦ S (Pearson et al.,
2007) and northern South America at∼10◦ N (Jaramillo et
al., 2010) is extremely small. Originally, the high temper-
atures in the southern ocean were explained by the supply
of warm water through poleward ocean currents (Kennett,
1977; Murphy and Kennett, 1986), but more recent work has
indicated that the East Tasman Plateau was more likely in-
fluenced by an Antarctic-derived Tasman Current (Huber et
al., 2004; Hollis et al., 2009; Bijl et al., 2011). Although the
warmest regions have not been sampled yet (Huber, 2008),
this supports previous observations (Bijl et al., 2009; Hollis
et al., 2009) of a significantly reduced temperature gradient
between the southwest Pacific and low latitudes. As indi-
cated for the Northern Hemisphere data (Sluijs et al., 2006,
2007b; Zachos et al., 2006), and then particularly the high
winter temperatures (e.g., Sluijs et al., 2009b), the small
meridional gradients remain problematic to reconcile with
current generation climate models, although recent model-
ing work has reduced the discrepancy (Abbot et al., 2009;
Heinemann et al., 2009).

Interestingly, regardless of the calibration, peak PETM
SSTs are similar to those recorded for the EECO at Site 1172
(Bijl et al., 2009). Unless Earth’s surface temperatures were
not sensitive to changing greenhouse forcing at this high tem-
perature end, this suggests that atmospheric greenhouse gas
levels were comparable during the peak of the PETM and

long-term warmth of the EECO. In fact, although regional
differences exist, peak PETM temperatures were similar to
those during ETM2 (Sluijs et al., 2009b; Stap et al., 2010).
If so, one may speculate that the long-term late Paleocene –
early Eocene warming and associated carbon isotope trend
that culminated in the EECO as well as the superimposed
hyperthermals, were caused by carbon injection (Hancock et
al., 2007) from the same reservoir. Such a scenario requires a
source that slowly added carbon to the global exogenic pool
during the long-term trend resulting in the EECO. During
the hyperthermals, it must have released carbon catastrophi-
cally, perhaps when an orbital (Lourens et al., 2005) thresh-
old was surpassed, followed by partial recharge. One reser-
voir that may behave like this is the methane hydrate reser-
voir (Dickens, 2003). Several potential problems exist with
methane hydrates as the only source of13C-depleted carbon,
such as the volume and residence time of this reservoir dur-
ing the Paleogene. However, a long-term net leakage from
hydrates during late Paleocene – early Eocene warming is
qualitatively consistent with a concomitant decrease in deep
oceanδ13C as observed in benthic foraminiferal calcite (Za-
chos et al., 2001) and a long-term deepening of the CCD
(Hancock et al., 2007).

4.3 Leads and lags

The genusApectodiniumoriginated close to the Danian-
Selandian boundary (Brinkhuis, 1994; Guasti et al., 2006)
but abundant occurrences were restricted to low latitudes un-
til the PETM (Bujak and Brinkhuis, 1998; Iakovleva et al.,
2001). On a global scale,Apectodiniumis an important (of-
ten dominant) constituent of the dinoflagellate cyst assem-
blages described from the PETM (Heilmann-Clausen, 1985;
Bujak and Brinkhuis, 1998; Egger et al., 2000; Crouch et al.,
2001; Steurbaut et al., 2003; Sluijs et al., 2006; Sluijs et al.,
2007a). At Site 1172, however, the lowermost acme starts
approximately 70 cm below the CIE.

An influx of abundantApectodiniumhas also been shown
to lead the CIE on the New Jersey Shelf, the Central North
Sea and, perhaps, New Zealand (Sluijs et al., 2007b), by ap-
proximately 5 kyrs (perhaps slightly longer if sedimentation
rates decreased in response to sea level rise; (see, Sluijs et
al., 2008a). The earlyApectodiniumacme recorded at Site
1172 can be interpreted in two ways. First, if the upper-
most Paleocene record at Site 1172 is relatively expanded,
the early acme may actually correlate to the early onset
recorded at other sites. Latest Paleocene sedimentation rates
of ∼10 cm/kyr are required to support this hypothesis, which
is significantly higher than the average across this part of the
section at Site 1172, but quite common for marginal marine
settings. If so, the rise in TEX86 around 612 rmbsf might
comprise the early warming recorded in New Jersey between
the onset of theApectodiniumacme and the CIE (Sluijs et al.,
2007b), although the latter records do not show a subsequent
cooling immediately prior to the onset of the CIE. We cannot
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exclude this hypothesis because of the poor constraints on
sedimentation rates in the uppermost Paleocene part of the
section. Secondly, average sedimentation rates of 5.7 m/Myr
suggest that this acme leads the CIE by some 100 kyr. If
so, the earlyApectodiniumacme may imply that conditions
at Site 1172 locally became similar to low latitude equato-
rial environments∼100 kyr prior to the CIE, but unrelated
to the PETM. This would imply extremely anomalous en-
vironmental change on the East Tasman Plateau, associated
with the first and mass occurrence of a typical low latitude
dinoflagellate in the Southern Ocean, which is not accom-
panied by significant change in other proxies and, critically,
not recorded in nearby sections at lower latitudes in New
Zealand (Crouch et al., 2001, 2003; Crouch and Brinkhuis,
2005). Although, this hypothesis seems inconsistent with
the strictly low-latitude biogeography of abundant Paleocene
Apectodinium, we cannot exclude it with the present data.

4.4 Sea level, hydrology and productivity

Low sedimentary Ca values are in line with a shallow ma-
rine depositional environment, dominated by siliciclastic in-
put. The Ca record shows a peak during the lower part of
the PETM. The persistence of carbonate accumulation in
this interval indicates that the CCD resided below the shelf
at the East Tasman Plateau during the entire event, con-
sistent with other shelf locations (e.g., Bolle et al., 2000;
John et al., 2008).

Representatives of the genusSenegaliniumdominate
dinocyst assemblages for most of the studied interval (Fig. 3).
Dinocysts assignable to this genus have been shown to toler-
ate very low salinities (Brinkhuis et al., 2006). HighSene-
galiniumabundances have been associated with salinity strat-
ification on the New Jersey Shelf during the PETM .(Sluijs
and Brinkhuis, 2009). Moreover,Senegaliniumlikely repre-
sents heterotrophic dinoflagellates, thereby thriving in rela-
tively nutrient-rich waters (Sluijs et al., 2005). Accordingly,
consistent with lithological information, we interpret high
abundances ofSenegaliniumspp. prior to the PETM as to
indicate near-shore, relatively high productive shelf settings,
with sustained fresh-water runoff from nearby rivers. This
interpretation is corroborated by relatively abundant river-
transported terrestrial palynomorphs (Fig. 3). Although the
low BIT values suggest a relatively low contribution of river-
ine transported soil derived organic matter, and relative ter-
restrial palynomorph abundances are not as high as seen in
other shelf settings across the PETM (e.g., Crouch et al.,
2003; Sluijs et al., 2006) these aspects most likely rather
reflect high burial fluxes of marine organic matter and iso-
prenoid GDGTs compared to terrestrial organic matter.

A decrease inSenegaliniumabundance at 613.3 rmbsf is
accompanied by a peak inGlaphyrocystaspp., a taxon of
which abundant occurrences are often associated with trans-
gressive system trackts and sea level rise (Iakovleva et al.,
2001; Pross and Brinkhuis, 2005), suggesting uppermost

Paleocene transgression at Site 1172. Generally increasing
abundances of other normal marine taxa, such asPyxidinop-
sis spp.,C. fibrospinosumcpx., Spiniferitesspp., andOper-
culodiniumspp. support this interpretation. A second peak
in Glaphyrocystaspp. at the onset of the CIE also suggests
renewed sea level rise during the early stages of the PETM,
supported by dropping BIT index values and a second drop in
Senegaliniumabundances. This transgression is seen along
continental margins on a global scale, including in aspects of
dinocyst assemblages in the New Zealand sections (Crouch
and Brinkhuis, 2005), and has, hence, shown to represent eu-
static rise (Sluijs et al., 2008a).

A record of sea level rise near the Antarctic margin is par-
ticularly interesting regarding the potential contributing role
of melting Antarctic ice sheets. If an Antarctic ice sheet
would have been present in the Paleocene, its self-gravitation
should have increased sea level around the continental mar-
gin. If the ice sheet melted during the PETM, the loss of
gravity should have lead to a decrease in sea level during the
PETM close to Antarctica, similar to projected for Green-
land’s margin if the Greenland Ice Sheet would melt (Bam-
ber et al., 2009). Hence, the record of sea level rise during
the PETM at Site 1172 might imply that no significant ice
sheet was present on Antarctica during the Paleocene.

4.5 Hydrology and sediment supply

Most studied marginal marine sites exhibit a vast increase in
sediment supply from the continent during the PETM (Sluijs
et al., 2008a), including New Jersey (John et al., 2008),
Lomonosov Ridge in the Arctic Ocean (Sluijs et al., 2008b),
the North Sea (Steurbaut et al., 2003; Sluijs et al., 2008a),
the Bay of Biscay (Schmitz et al., 2001; Pujalte and Schmitz,
2006), the Central Northern Tethys (Giusberti et al., 2007),
California (John et al., 2008), and several sections in the
southwest Pacific region, notably in New Zealand, such as
Tawanui (Crouch et al., 2003) and the Clarence River Valley
(Hollis et al., 2005; Nicolo et al., 2011). This is generally
interpreted as an increase in terrestrial weathering and re-
sulting supply of siliciclastic material to the shelf by rivers.
At Site 1172, no obvious change in average sedimentation
rates was recorded during the PETM. This could mean that
the strong hydrological response as recorded elsewhere did
not take place in the region of the East Tasman Plateau,
which is supported by the decrease in fresh-water tolerant
dinocysts (Fig. 2). Alternatively, transgression caused sedi-
ment condensation at this proximal site. In addition, during
the sampling of the core, we did note that the PETM inter-
val is slightly coarser-grained, although, as yet, no data were
generated to quantify this. Hence, potentially the sediment-
water interface experienced more intense winnowing, ham-
pering the deposition of large amounts of clay.
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4.6 Speculations on salinity and storminess

A peak ofEocladopyxisspp., a member of the extant fam-
ily Goniodomidae that mainly inhabits polysaline, lagoonal
environments (Wall et al., 1977), occurs within the PETM.
Potentially, SSTs were only warm enough for this species
to thrive in the Southern Ocean during peak PETM warmth,
which may also seasonally have caused regional hypersaline
conditions. The ecology of extant Goniodomids provides
room for speculations regarding the conditions for the lo-
cal environment. Abundant representatives of related species
in the modern ocean (e.g., the harmful speciesPyrodinium
bahamense) have been related to hypersaline conditions
(Reichart et al., 2004). Critically, however, in many regions,
seasonal storm activity appears important to resuspend dor-
mant cysts into the water column to hatch and fulfill their life
cycle (Villanoy et al., 1996, 2006). In such systems, the sub-
sequent bloom initiates in the wake of the storm when salini-
ties drop due to increased river run off, and when turbulence
is minimal (e.g., Dale, 2001; Siringan et al., 2008). Increased
river run off and surface ocean stratification might be induced
by tropical storms. Hence, storm activity and seasonal river
input might have increased in the southwest Pacific region
during the PETM, consistent with increased abundances of
terrestrial palynomorphs. In any case, a peak in Goniodo-
mids has at Site 1172 only been recorded during the PETM
(Fig. 3) and the EECO (Brinkhuis et al., 2003; Sluijs et al.,
2003; Bijl, 2007), indicating a very particular environment
for this region, likely associated with a change in seasonality
of regional hydrology, maximum temperatures and perhaps
storm activity.

4.7 Highly variable assemblages within the PETM

The dinocyst record suggests relatively stable conditions
through the latest Paleocene and some more variation close to
the onset of the CIE and within the PETM, with short-lived
abundances ofGlaphyrocysta, Eocladopyxis, Pyxidinopsis,
Cordosphaeridium fibrospinosumcomplex,Spiniferites, Op-
erculodinium, and Membranosphaera. Such intra-PETM
variability has also been recorded in continental deposits
from Wyoming (Bowen et al., 2004; Wing et al., 2005; Kraus
and Riggins, 2007) and on the New Jersey Shelf (Sluijs and
Brinkhuis, 2009). Although at the moment the cause of these
variations are unknown, they do suggest that climate during
the PETM may have been much more variable and dynamic
on time scales of 103–104 years, perhaps on a global scale.

5 Conclusions

A relatively complete PETM record was identified in sedi-
ments recovered from the East Tasman Plateau during ODP
Leg 189, deposited at a paleolatitude of∼65◦ S. Sediments
are almost devoid of biogenic calcite but yield rich organic

microfossil assemblages. TEX86 paleothermometry indi-
cates that SSTs warmed by∼7◦C to maximum values of
33◦C during the PETM, with a magnitude similar to or
slightly larger than the global estimate of warming. Such sur-
prisingly warm SSTs for this latitude indicate that meridional
temperature gradients were very low across the Paleocene-
Eocene transition, even though the reconstructed SSTs may
be biased towards summer temperatures. Maximum tem-
peratures were similar to those during the EECO, perhaps
implying similar greenhouse gas concentrations. If so, one
may speculate that long-term late Paleocene to early Eocene
warming, carbon isotope trends and superimposed hyperther-
mals, were associated with carbon release from the same
reservoir, perhaps methane hydrates. The globally recorded
acme of the taxonApectodiniumleads the CIE at Site 1172,
which may represent the same early onset as recorded on the
New Jersey Shelf and the North Sea. A decrease in the abun-
dance of the fresh water-tolerant dinoflagellate cystSene-
galiniumsuggests a decrease in the influence of river run off
at the core site during the PETM, possibly in concert with
sea level rise. However, a unique abundance of the euryha-
line taxonEocladopyxismay indicate a change in the season-
ality of the regional hydrological system and an increase in
storm activity. Finally, significant variations in dinocyst as-
semblages within the PETM indicate that southwest Pacific
climates varied much more significantly over time scales of
103–104 years during the event, than during background late
Paleocene – early Eocene times, consistent with records from
the New Jersey Shelf and continental North America.

Supplementary material related to this
article is available online at:
http://www.clim-past.net/7/47/2011/
cp-7-47-2011-supplement.zip.
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