Clim. Past, 7, 745-756, 2011
www.clim-past.net/7/745/2011/
doi:10.5194/cp-7-745-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology
H. Beltrami1, J. E. Smerdon2, G. S. Matharoo1, and N. Nickerson3
1Environmental Sciences Research Centre, St. Francis Xavier University, 1 West Street, Antigonish, Nova Scotia, B2G 2W5, Canada
2Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
3Department of Earth Sciences, Dalhousie University, Halifax, Canada

Abstract. A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500–600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500–600 m remains even if the time span of the reconstruction target is shortened.

Citation: Beltrami, H., Smerdon, J. E., Matharoo, G. S., and Nickerson, N.: Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology, Clim. Past, 7, 745-756, doi:10.5194/cp-7-745-2011, 2011.
 
Search CP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share