Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Clim. Past, 9, 1697-1714, 2013
http://www.clim-past.net/9/1697/2013/
doi:10.5194/cp-9-1697-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
01 Aug 2013
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
K. Saito1,2, T. Sueyoshi2, S. Marchenko3, V. Romanovsky3,4, B. Otto-Bliesner5, J. Walsh1, N. Bigelow6, A. Hendricks1, and K. Yoshikawa7 1International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, USA
2Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
3Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA
4Earth Cryosphere Institute, Tyumen, Russia
5National Center for Atmospheric Research, Boulder, USA
6Alaska Quaternary Center, University of Alaska Fairbanks, Fairbanks, USA
7Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, USA
Abstract. Here, global-scale frozen ground distribution from the Last Glacial Maximum (LGM) has been reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present day (pre-industrial; 0 kya) and the LGM (21 kya). This direct method was then compared to an earlier indirect method, which categorizes underlying frozen ground type from surface air temperature, applying to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 kya showed strong agreement with the present-day observation-based map. The soil temperature ensemble showed a higher diversity around the border between permafrost and seasonally frozen ground among the models, partly due to varying subsurface processes, implementation, and settings. The area of continuous permafrost estimated by the PMIP3 multi-model analysis through the direct (indirect) method was 26.0 (17.7) million km2 for LGM, in contrast to 15.1 (11.2) million km2 for the pre-industrial control, whereas seasonally frozen ground decreased from 34.5 (26.6) million km2 to 18.1 (16.0) million km2. These changes in area resulted mainly from a cooler climate at LGM, but from other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble – improved over those of the PMIP2 due to higher spatial resolutions and improved climatology – also compared better to previous knowledge derived from geomorphological and geocryological evidence. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.

Citation: Saito, K., Sueyoshi, T., Marchenko, S., Romanovsky, V., Otto-Bliesner, B., Walsh, J., Bigelow, N., Hendricks, A., and Yoshikawa, K.: LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?, Clim. Past, 9, 1697-1714, doi:10.5194/cp-9-1697-2013, 2013.
Publications Copernicus
Download
Share