Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.638 IF 3.638
  • IF 5-year<br/> value: 3.722 IF 5-year
  • SNIP value: 0.979 SNIP 0.979
  • IPP value: 3.298 IPP 3.298
  • SJR value: 2.047 SJR 2.047
  • h5-index value: 35 h5-index 35
Clim. Past, 9, 243-260, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
30 Jan 2013
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette Department of Geosciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
Abstract. Arctic paleoenvironmental archives serve as sensitive recorders of past climate change. Lake El'gygytgyn (Far East Russian Arctic) is a high-latitude crater impact lake that contains a continuous sediment record influenced by neither glaciation nor glacial erosion since the time of impact 3.58 Ma ago. Prior research on sediments collected from Lake El'gygytgyn suggest times of permanent ice cover and anoxia corresponding to global glacial intervals, during which the sediments are laminated and are characterized by the co-occurrence of high total organic carbon, microscopic magnetite grains that show etching and dissolution, and negative excursions in bulk sediment organic matter carbon isotope (δ13C) values. Here we investigate the abundance and carbon isotopic composition of lipid biomarkers recovered from Lake El'gygytgyn sediments spanning marine isotope stages 1–3 to identify key sources of organic matter (OM) to lake sediments, to establish which OM sources drive the negative δ13C excursion exhibited by bulk sediment OM, and to explore if there are molecular and isotopic signatures of anoxia in the lake during glaciation. We find that during marine isotope stages 1–3, direct evidence for water column anoxia is lacking. A ~4‰ negative excursion in bulk sediment δ13C values during the Local Last Glacial Maximum (LLGM) is accompanied by more protracted, higher magnitude negative excursions in n-alkanoic acid and n-alkanol δ13C values that begin 20 kyr in advance of the LLGM. In contrast, n-alkanes and the C30 n-alkanoic acid do not exhibit a negative δ13C excursion at this time. Our results indicate that the C24, C26 and C28 n-alkanoic acids do not derive entirely from terrestrial OM sources, while the C30 n-alkanoic acid at Lake El'gygytgyn is a robust indicator of terrestrial OM contributions. Overall, our results strongly support the presence of a nutrient-poor water column, which is mostly isolated from atmospheric carbon dioxide during glaciation at Lake El'gygytgyn.

Citation: Holland, A. R., Petsch, S. T., Castañeda, I. S., Wilkie, K. M., Burns, S. J., and Brigham-Grette, J.: A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3, Clim. Past, 9, 243-260, doi:10.5194/cp-9-243-2013, 2013.
Publications Copernicus