Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Clim. Past, 9, 2507-2523, 2013
http://www.clim-past.net/9/2507/2013/
doi:10.5194/cp-9-2507-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
06 Nov 2013
A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception
R. Schneider1,2, J. Schmitt1,2,3, P. Köhler3, F. Joos1,2, and H. Fischer1,2,3 1Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), P.O. Box 12 01 61, 27515 Bremerhaven, Germany
Abstract. The reconstruction of the stable carbon isotope evolution in atmospheric CO213Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

Citation: Schneider, R., Schmitt, J., Köhler, P., Joos, F., and Fischer, H.: A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception, Clim. Past, 9, 2507-2523, doi:10.5194/cp-9-2507-2013, 2013.
Publications Copernicus
Download
Share