Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.382 IF 3.382
  • IF 5-year<br/> value: 3.684 IF 5-year
  • SNIP value: 0.979 SNIP 0.979
  • IPP value: 3.298 IPP 3.298
  • SJR value: 2.047 SJR 2.047
  • h5-index value: 35 h5-index 35
Clim. Past, 9, 621-639, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
11 Mar 2013
Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise
E. J. Stone1, D. J. Lunt1, J. D. Annan2, and J. C. Hargreaves2 1BRIDGE, School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
2Research Institute for Global Change, JAMSTEC, Yokohama, Japan
Abstract. During the Last Interglacial period (~ 130–115 thousand years ago) the Arctic climate was warmer than today, and global mean sea level was probably more than 6.6 m higher. However, there are large discrepancies in the estimated contributions to this sea level change from various sources (the Greenland and Antarctic ice sheets and smaller ice caps). Here, we determine probabilistically the likely contribution of Greenland ice sheet melt to Last Interglacial sea level rise, taking into account ice sheet model parametric uncertainty. We perform an ensemble of 500 Glimmer ice sheet model simulations forced with climatologies from the climate model HadCM3, and constrain the results with palaeodata from Greenland ice cores. Our results suggest a 90% probability that Greenland ice melt contributed at least 0.6 m, but less than 10% probability that it exceeded 3.5 m, a value which is lower than several recent estimates. Many of these previous estimates, however, did not include a full general circulation climate model that can capture atmospheric circulation and precipitation changes in response to changes in insolation forcing and orographic height. Our combined modelling and palaeodata approach suggests that the Greenland ice sheet is less sensitive to orbital forcing than previously thought, and it implicates Antarctic melt as providing a substantial contribution to Last Interglacial sea level rise. Future work should assess additional uncertainty due to inclusion of basal sliding and the direct effect of insolation on surface melt. In addition, the effect of uncertainty arising from climate model structural design should be taken into account by performing a multi-climate-model comparison.

Citation: Stone, E. J., Lunt, D. J., Annan, J. D., and Hargreaves, J. C.: Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise, Clim. Past, 9, 621-639, doi:10.5194/cp-9-621-2013, 2013.
Publications Copernicus