Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.470 IF 3.470
  • IF 5-year value: 4.009 IF 5-year
    4.009
  • CiteScore value: 3.45 CiteScore
    3.45
  • SNIP value: 1.166 SNIP 1.166
  • IPP value: 3.28 IPP 3.28
  • SJR value: 1.929 SJR 1.929
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 64 Scimago H
    index 64
  • h5-index value: 43 h5-index 43
Volume 1, issue 1
Clim. Past, 1, 1–7, 2005
https://doi.org/10.5194/cp-1-1-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Clim. Past, 1, 1–7, 2005
https://doi.org/10.5194/cp-1-1-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  04 Oct 2005

04 Oct 2005

Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum

A. Jahn1,2, M. Claussen1,3, A. Ganopolski1, and V. Brovkin1 A. Jahn et al.
  • 1Potsdam Institute for Climate Impact Research (PIK), P.O. Box 601203, 14412 Potsdam, Germany
  • 2Now at Department of Atmospheric and Oceanic Sciences, McGill University, Burnside Hall Room 945, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada
  • 3Institute of Physics, Potsdam University, P.O. Box 601543, 14415 Potsdam, Germany

Abstract. The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1°C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0°C), followed by the effect of lower atmospheric CO2 levels at the LGM (-1.5°C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6°C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0°C, while the radiative effect of lower atmospheric CO2 in this region only produces a cooling of 1.5°C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO2 concentrations.

Publications Copernicus
Download
Citation