Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.470 IF 3.470
  • IF 5-year value: 4.009 IF 5-year
    4.009
  • CiteScore value: 3.45 CiteScore
    3.45
  • SNIP value: 1.166 SNIP 1.166
  • IPP value: 3.28 IPP 3.28
  • SJR value: 1.929 SJR 1.929
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 64 Scimago H
    index 64
  • h5-index value: 43 h5-index 43
Volume 10, issue 5
Clim. Past, 10, 1871–1885, 2014
https://doi.org/10.5194/cp-10-1871-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Clim. Past, 10, 1871–1885, 2014
https://doi.org/10.5194/cp-10-1871-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Oct 2014

Research article | 22 Oct 2014

Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite

M. Van Rampelbergh1, S. Verheyden1,2, M Allan3, Y. Quinif4, E. Keppens1, and P. Claeys1 M. Van Rampelbergh et al.
  • 1Earth System Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan, 1050, Brussels, Belgium
  • 2Royal Belgian Institute of Natural Sciences, Geological Survey, Direction Earth and History of Life, Jennerstraat 13, 1000, Brussels, Belgium
  • 3AGEs, Départment de Géologie, Université de Liège, Allée du 6 Août, B18 Sart-Tilman, 4000, Liège, Belgium
  • 4Faculté Polytechnique, Université de Mons, Rue de Houdain 9, 7000, Mons, Belgium

Abstract. Speleothems provide paleoclimate information on multimillennial to decadal scales in the Holocene. However, seasonal or even monthly resolved records remain scarce. Such records require fast-growing stalagmites and a good understanding of the proxy system on very short timescales. The Proserpine stalagmite from the Han-sur-Less cave (Belgium) displays well-defined/clearly visible darker and lighter seasonal layers of 0.5 to 2 mm thickness per single layer, which allows a measuring resolution at a monthly scale. Through a regular cave monitoring, we acquired a good understanding of how δ18O and δ13C signals in modern calcite reflect climate variations on the seasonal scale. From December to June, outside temperatures are cold, inducing low cave air and water temperature, and bio-productivity in the soil is limited, leading to lower pCO2 and higher δ13C values of the CO2 in the cave air. From June to December, the measured factors display an opposite behavior.

The absence of epikarst water recharge between May and October increases prior calcite precipitation (PCP) in the vadose zone, causing drip water to display increasing pH and δ13C values over the summer months. Water recharge of the epikarst in winter diminishes the effect of PCP and as a result the pH and δ13C of the drip water gradually decrease. The δ18O and δ13C signals of fresh calcite precipitated on glass slabs also vary seasonally and are both reflecting equilibrium conditions. Lowest δ18O values occur during the summer, when the δ13C values are high. The δ18O values of the calcite display seasonal variations due to changes in the cave air and water temperature. The δ13C values reflect the seasonal variation of the δ13CDIC of the drip water, which is affected by the intensity of PCP. This same anticorrelation of the δ18O versus the δ13C signals is seen in the monthly resolved speleothem record that covers the period between 1976 and 1985 AD. Dark layers display lower δ18O and higher δ13C values. The cave system varies seasonally in response to the activity of the vegetation cover and outside air temperature between a "summer mode" lasting from June to December and a "winter mode" from December to June. The low δ18O and high δ13C values of the darker speleothem layers indicate that they are formed during summer, while light layers are formed during winter. The darker the color of a layer, the more compact its calcite structure is, and the more negative its δ18O signal and the more positive its δ13C signal are. Darker layers deposited from summer drip water affected by PCP are suggested to contain lower Ca2+ concentration. If indeed the calcite saturation represents the main factor driving the Proserpine growth rate, the dark layers should grow slower than the white layers.

Publications Copernicus
Download
Citation