Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 10, issue 1 | Copyright
Clim. Past, 10, 251-260, 2014
https://doi.org/10.5194/cp-10-251-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Feb 2014

Research article | 05 Feb 2014

Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II

S. Kasper1, M. T. J. van der Meer1, A. Mets1, R. Zahn2,3, J. S. Sinninghe Damsté1, and S. Schouten1 S. Kasper et al.
  • 1NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg (Texel), the Netherlands
  • 2Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
  • 3Universitat Autònoma de Barcelona, Institut de Ciència i Tecnologia Ambientals (ICTA) and Departament de Física, 08193 Bellaterra, Spain

Abstract. At the southern tip of Africa, the Agulhas Current reflects back into the Indian Ocean causing so-called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas Current, based on paleo-sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic was reduced during glacial stages as a consequence of shifted wind fields and a northwards migration of the subtropical front. Subsequently, this might have led to a buildup of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δD, and paleo-sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions indicate an abrupt warming during the glacial terminations, while a shift to more negative δDalkenone values of approximately 14‰ during glacial Termination I and II is also observed. Approximately half of the isotopic shift can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δDalkenone represents a salinity change of ca. 1.7–1.9 during Termination I and Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic Foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results confirm that the δD of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic Foraminifera δ18O.

Publications Copernicus
Download
Citation
Share