Articles | Volume 11, issue 1
https://doi.org/10.5194/cp-11-1-2015
https://doi.org/10.5194/cp-11-1-2015
Research article
 | 
05 Jan 2015
Research article |  | 05 Jan 2015

Thenardite after mirabilite deposits as a cool climate indicator in the geological record: lower Miocene of central Spain

M. J. Herrero, J. I. Escavy, and B. C. Schreiber

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Cenozoic
Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes
Christopher K. West, David R. Greenwood, Tammo Reichgelt, Alexander J. Lowe, Janelle M. Vachon, and James F. Basinger
Clim. Past, 16, 1387–1410, https://doi.org/10.5194/cp-16-1387-2020,https://doi.org/10.5194/cp-16-1387-2020, 2020
Short summary
Late Miocene–Pliocene climate evolution recorded by the red clay cover on the Xiaoshuizi planation surface, NE Tibetan Plateau
Xiaomiao Li, Tingjiang Peng, Zhenhua Ma, Meng Li, Zhantao Feng, Benhong Guo, Hao Yu, Xiyan Ye, Zhengchuang Hui, Chunhui Song, and Jijun Li
Clim. Past, 15, 405–421, https://doi.org/10.5194/cp-15-405-2019,https://doi.org/10.5194/cp-15-405-2019, 2019
Short summary
Middle Miocene climate of southwestern Anatolia from multiple botanical proxies
Johannes Martin Bouchal, Tuncay Hüseyin Güner, and Thomas Denk
Clim. Past, 14, 1427–1440, https://doi.org/10.5194/cp-14-1427-2018,https://doi.org/10.5194/cp-14-1427-2018, 2018
Short summary
CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method
M. Chevalier, R. Cheddadi, and B. M. Chase
Clim. Past, 10, 2081–2098, https://doi.org/10.5194/cp-10-2081-2014,https://doi.org/10.5194/cp-10-2081-2014, 2014
Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014,https://doi.org/10.5194/cp-10-209-2014, 2014

Cited articles

Alberdi, M. T., Hoyos, M., Junco, F., López-Martínez, N., Morales, J., Sesé, C., and Soria, D.: Biostratigraphy and sedimentary evolution of continental Neogene in the Madrid area, Paléobiol. Continent., 14, 47–68, 1984.
Ayllón-Quevedo, F., Souza-Egipsy, V., Sanz-Montero, M. E., and Rodriguez-Aranda, J. P.: Fluid inclusion analysis of twinned selenite gypsum beds from the Miocene of the Madrid basin (Spain), Implication on dolomite bioformation., Sediment. Geol., 201, 212–230, 2007.
Ayora, C., García-Veigas, J., and Pueyo Mur, J. J.: X-ray microanalysis of fluid inclusions and its application to the geochemical modelling of evaporite basins, Geochim. Cosmochim. Ac., 58, 43–55, 1994.
Babel, M. and Schreiber, B. C.: Geochemistry of Evaporites and Evolution of Seawater. In: Treatise on Geochemistry (Second Edition), edited by: Turekian, K. and Holland, H., Elsevier, Oxford, 2014.
Billups, K., Channell, J. E. T., and Zachos, J.: Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic, Paleoceanography, 17, 4.1–4.11, 2002.
Download
Short summary
Thenardite deposits from the lower Miocene unit of the Tajo basin, Spain, result from a mirabilite diagenetic transformation salt that forms under cool climatic conditions. The time of the mirabilite formation correlates with a Mi cooling event coincident with mammal assemblages related to a relatively cool and arid climate in other basins of the Iberian Peninsula. This diagenetic transformation can be used as an analog with deposits from extreme conditions such as Antarctica or Mars.