Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 12, issue 8 | Copyright
Clim. Past, 12, 1721-1737, 2016
https://doi.org/10.5194/cp-12-1721-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Aug 2016

Research article | 25 Aug 2016

Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

Heiko Goelzer1,a, Philippe Huybrechts1, Marie-France Loutre2, and Thierry Fichefet2 Heiko Goelzer et al.
  • 1Earth System Sciences & Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
  • 2Université catholique de Louvain, Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research (TECLIM), Louvain-la-Neuve, Belgium
  • anow at: Institute for Marine and Atmospheric Research Utrecht, Utrecht University, the Netherlands

Abstract. Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the climate evolution at the onset of the Last Interglacial. The period from 135 to 120kyrBP is simulated with the Earth system model of intermediate complexity LOVECLIM v.1.3 with prescribed evolution of the Antarctic ice sheet, the Greenland ice sheet, and the other Northern Hemisphere ice sheets. Variations in meltwater fluxes from the Northern Hemisphere ice sheets lead to North Atlantic temperature changes and modifications of the strength of the Atlantic meridional overturning circulation. By means of the interhemispheric see-saw effect, variations in the Atlantic meridional overturning circulation also give rise to temperature changes in the Southern Hemisphere, which are additionally modulated by the direct impact of Antarctic meltwater fluxes into the Southern Ocean. Freshwater fluxes from the melting Antarctic ice sheet lead to a millennial timescale oceanic cold event in the Southern Ocean with expanded sea ice as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.

Publications Copernicus
Download
Short summary
We have modelled the climate evolution from 135 to 120 kyr BP with an Earth system model to study the onset of the Last Interglacial warm period. Ice sheet changes and associated freshwater fluxes in both hemispheres constitute an important forcing in the simulations. Freshwater fluxes from the melting Antarctic ice sheet are found to lead to an oceanic cold event in the Southern Ocean as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.
We have modelled the climate evolution from 135 to 120 kyr BP with an Earth system model to...
Citation
Share