
SUPPLEMENTARY INFORMATION 

S1. Additional information on statistical analysis 

Nannofossil data from the Cicogna section (NE Italy) were subjected to statistical analysis using the 

program PAST.  

For PCA analysis, we additionally provide the biplot and the loading graphs of Component 1 and 

Component 2 (Figure S1). 

For non-metric MultiDimensional Scaling (MDS) analysis, the species counts were combined to 

produce a matrix of 15 genera. A square root transformation, used to standardize the matrix, was 

chosen to minimize the influence of dominant taxa on the ordination (Schneider et al., 2011). Non-

metric multidimensional scaling (MDS), using the Bray–Curtis distance metric (Figure S2) was 

applied in order to avoid assumptions as much as possible and guarantee the preservation of the 

relative differences between the samples (McCune and Grace, 2002). 
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S2. Further explanation regarding biostratigraphic calcareous nannofossil counts 

The high abundance, widespread distribution and rapid evolution of calcareous nannofossils make 

them one of the most powerful tool to date Cenozoic marine sediments. The use of semi-

quantitative counting and the gathering of high resolved datasets greatly enhance their correlation 

potential (Backman et al., 2012; Agnini et al., 2014).  

The methodology used in this study for samples of ODP Site 1262 is that proposed by Backman 

and Shackleton (1983), which consists in counting the number of calcareous nannofossils belonging 

to a specific taxon present in a prefixed area (1 mm2). Because of significant dilution by terrigenous 

material in samples from the Cicogna section, we extended the study area to 9 mm2. To further 



appreciate the importance of semi-quantitative estimates and high-resolution sampling, we 

compare the Top D. multiradiatus and Base D. lodoensis as recorded from the Cicogna section, ODP 

Site 1262 and DSDP Site 550 (FigureS3). At Cicogna and ODP Site 1262, we provide detailed 

abundance patterns of these two taxa. Discoaster multiradiatus shows a first decrease in abundance 

preceding the H1 event and a definitive disappearance just before the onset of the I1 event. 

Discoaster lodoensis displays a first presence in the I1 event, which is followed by an interval of 

absence that eventually leads to its continuous and common presence close to the onset of the X 

event (Figure S3). Datasets from the Cicogna section and ODP Site 1262 allow a very detailed 

characterization of these two biohorizons and the recognition of peculiar features that are not 

present in the low-resolution qualitative biostratigraphic data available for DSDP Site 550. As a 

consequence, the stratigraphic position of Top D. multiradiatus and Base D. lodoensis at DSDP Site 

550 are inaccurate. We hope that this simple exercise could serve to emphasize the crucial 

importance of producing high-resolution semi-quantitative data to obtain the most reliable 

biostratigraphic results. 
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S3. Looking through “frosty glass”: Comparison to records at ODP Site 690 

We have presented fairly detailed records of bulk carbonate δ13C and quantified calcareous 

nannofossil assemblages for the lower Paleogene section at Cicogna, and compared these records 

with those at the only two locations with similar information. From this comparison, we suggest 

that a very detailed template exists for the alignment of δ13C records and calcareous nannofossil 

assemblage counts across the early Paleogene (Figure 11), one with much higher resolution than 

given in most previous work, and one most likely related to changes in past global carbon cycling, 

oceanography, and calcareous nannoplankton evolution. 

Significant variations in calcareous nannofossil abundances definitely happened at multiple 

locations during the PETM (Bralower, 2002, and references noted in main text). However, it is by no 

means clear whether such changes extended across the broader early Paleogene, nor how such 

changes might compare to those across the PETM. One can certainly speculate that variations in 

calcareous nannofossil abundance records and bulk carbonate δ13C records might correlate in fine 

temporal detail across widely distributed sites throughout the early Paleogene, given well-

established calcareous nannofossil biozone schemes (Martini, 1971; Okada and Bukry, 1980; Agnini 

et al., 2014), and a growing appreciation of a very dynamic carbon cycle over this time interval. 

Nonetheless, the generation of detailed and coupled multi-million year records for quantified 

calcareous nannofossil abundances and bulk carbonate δ13C perplexed one of the referees for this 



paper, who insisted that we needed to make comparisons with existing work at ODP Site 690 and 

to explain discrepancies. 

The lower Paleogene record at Site 690 provides a very good example in which to highlight the 

basic background and importance of our work. Three holes were drilled and cored at ODP Site 690 

on Maud Rise (South Atlantic; Figure 1) in 1987 using the advanced piston corer (APC) (Barker et al., 

1988). Sediment recovery within each core was nearly 100 %, although some cores were shorter 

than the full 9.7 m. However, most of the lower Paleogene sequence was retrieved in only one of 

the holes, 690B (Barker et al., 1988). This is important, because m-scale gaps generally occur 

between successive cores during APC operations (Ruddiman et al., 1987; Lisiecki and Herbert, 2007). 

The early Paleogene section at Site 690 is, almost assuredly, incomplete, with “missing” portions at 

each core break.  

Sediment from Core 690B-19H has been the focus of numerous papers, as it contains the PETM 

(Kennett and Stott, 1991; Bains et al., 1999; Bralower, 2002). However, correlating this core to the 

surrounding sedimentary record at Site 690, and the latter to early Paleogene records at other 

locations is problematic, at least with any detail. For example, using Hole 690B records, Cramer et 

al. (2003) estimated that 1.4 Myr occurred between the PETM and the H-1 event. This is incorrect, 

as the duration is close to 1.8 Myr (Westerhold et al., 2008). Beyond the aforementioned core gaps, 

there are major issues with the paleomagnetic record of early Paleogene sediments in Hole 690B 

(Ali et al., 2000). Indeed, Ali et al. (2000) recommend using calcareous nannofossil records for 

correlation purposes of this interval. 

Records of bulk carbonate δ13C (Cramer et al., 2003) and calcareous nannofossil relative 

abundances (Pospichal and Wise, 1990) have been generated using sediment at Hole 690B. When 

coupled together (Figure S4), these records show similarities to those at Cicogna (Figure 11). There 

is the long-term late Paleocene-early Eocene drop in δ13C and several superimposed short-term 



negative CIEs. There are also closely coeval changes in calcareous nannofossil abundances, such as 

the peak in D. multiradiatus across the C event, the subsequent peak in Fasciculithus spp., and the 

cross-over of T. contortus and T. orthostylus just before the H-1 event. One can also see the problem 

with examining nannofossils at low depth/time resolution and qualitatively. We suggest here a 

“frosty glass” hypothesis, where details of Earth system change in the distant past are blurred 

presently by poorly resolved stratigraphy. This includes basic problems with aligning sections in 

depth and time, as well as interpretable quantification of data at high spatial resolution. Despite the 

need for additional work at Site 690, we suggest that available records at this location support the 

template offered in the main text. 
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Figure S1.  PCA plots of calcareous nannofossil data from the Cicogna section (Italy). A) Loading plot of Component 1; 
B) Loading  plot of Component 2; C Biplot.
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