Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Clim. Past, 13, 1339-1354, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Oct 2017
Pseudo-proxy evaluation of climate field reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita Helmholtz Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
Abstract. Two statistical methods are tested to reconstruct the interannual variations in past sea surface temperatures (SSTs) of the North Atlantic (NA) Ocean over the past millennium based on annually resolved and absolutely dated marine proxy records of the bivalve mollusk Arctica islandica. The methods are tested in a pseudo-proxy experiment (PPE) setup using state-of-the-art climate models (CMIP5 Earth system models) and reanalysis data from the COBE2 SST data set. The methods were applied in the virtual reality provided by global climate simulations and reanalysis data to reconstruct the past NA SSTs using pseudo-proxy records that mimic the statistical characteristics and network of Arctica islandica. The multivariate linear regression methods evaluated here are principal component regression and canonical correlation analysis. Differences in the skill of the climate field reconstruction (CFR) are assessed according to different calibration periods and different proxy locations within the NA basin. The choice of the climate model used as a surrogate reality in the PPE has a more profound effect on the CFR skill than the calibration period and the statistical reconstruction method. The differences between the two methods are clearer for the MPI-ESM model due to its higher spatial resolution in the NA basin. The pseudo-proxy results of the CCSM4 model are closer to the pseudo-proxy results based on the reanalysis data set COBE2. Conducting PPEs using noise-contaminated pseudo-proxies instead of noise-free pseudo-proxies is important for the evaluation of the methods, as more spatial differences in the reconstruction skill are revealed. Both methods are appropriate for the reconstruction of the temporal evolution of the NA SSTs, even though they lead to a great loss of variance away from the proxy sites. Under reasonable assumptions about the characteristics of the non-climate noise in the proxy records, our results show that the marine network of Arctica islandica can be used to skillfully reconstruct the spatial patterns of SSTs at the eastern NA basin.

Citation: Pyrina, M., Wagner, S., and Zorita, E.: Pseudo-proxy evaluation of climate field reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network, Clim. Past, 13, 1339-1354,, 2017.
Publications Copernicus