Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
  • CiteScore value: 3.48 CiteScore
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
Volume 13, issue 3 | Copyright
Clim. Past, 13, 267-301, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Mar 2017

Research article | 29 Mar 2017

Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data

Lilo M. K. Henke1, F. Hugo Lambert2, and Dan J. Charman1 Lilo M. K. Henke et al.
  • 1Department of Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
  • 2Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Road, Exeter, EX4 4QF, UK

Abstract. The El Niño–Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature–precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD  ∼ 800–1300) and the Little Ice Age (LIA; AD  ∼ 1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records and establish the long-term stability of this important mode of climatic variability.

Publications Copernicus
Short summary
To understand future ENSO behaviour we must look at the past, but temperature and rainfall proxies (e.g. tree rings, sediment cores) appear to show different responses. We tested this by making separate multi-proxy ENSO reconstructions for precipitation and temperature and found no evidence of a disagreement between ENSO-driven changes in precipitation and temperature. While this supports our physical understanding of ENSO, the lack of good proxy data must be addressed to further explore this.
To understand future ENSO behaviour we must look at the past, but temperature and rainfall...