Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events

Mélanie Wary1, Frédérique Eynaud1, Didier Swingedouw1, Valérie Masson-Delmotte2, Jens Matthiessen3, Catherine Kissel2, Jena Zumaque1,a, Linda Rossignol1, and Jean Jouzel2

1UMR 5805, EPOC (Environnements et Paléoenvironnements Océaniques et Continentaux), CNRS-EPHE-Université de Bordeaux, 33615 Pessac, France
2UMR8212, LSCE (Laboratoire des Sciences du Climat et de l’Environnement)/IPSL (Institut Pierre Simon Laplace), CEA/CNRS-INSU/UVSQ, 91191 Gif-sur-Yvette CEDEX, France
3AWI (Alfred Wegener Institute), Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany
anow at: GEOTOP, UQAM, Montréal, Québec H3C 3P8, Canada

Correspondence to: Mélanie Wary (melanie.wary@u-bordeaux.fr)

Received: 7 February 2017 – Discussion started: 13 February 2017
Revised: 19 May 2017 – Accepted: 25 May 2017 – Published: 30 June 2017

Abstract. Dansgaard–Oeschger oscillations constitute one of the most enigmatic features of the last glacial cycle. Their cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here, based on dinocyst analyses from the 48–30 ka interval of four sediment cores from the northern Northeast Atlantic and southern Norwegian Sea, we provide direct and quantitative evidence of a regional paradoxical seesaw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases. Combined with additional palaeorecords and multi-model hosing simulations, our results suggest that during cold Greenland phases, reduced Atlantic meridional overturning circulation and cold North Atlantic sea-surface conditions were accompanied by the subsurface propagation of warm Atlantic waters that re-emerged in the Nordic Seas and provided moisture towards Greenland summit.

1 Introduction

The last glacial cycle has been punctuated by abrupt climatic variations strongly imprinted in Greenland ice core records where they translate into millennial oscillations between cold (Greenland stadial, GS) and warm (Greenland interstadial, GI) atmospheric phases (e.g., North Greenland Ice Core Project members, 2004). They are tightly linked to pan-North Atlantic ice-sheet dynamic that manifests itself by cyclic iceberg releases concomitant with GS (Bond and Lotti, 1995). These variations are thought to be linked to changes in the North Atlantic meridional overturning circulation, potentially in response to iceberg-derived freshwater injections in the North Atlantic (Kageyama et al., 2010). A few palaeoclimatic studies (Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004; Dokken et al., 2013) and sensitivity tests performed with atmospheric models (Li et al., 2010) have also suggested that the expansion of sea ice in the Nordic Seas during GS could be a key amplifier, explaining the large 5–16°C magnitude of Greenland cooling (Kindler et al., 2014). However, cold sea-surface temperatures (SSTs) and expansion of sea ice during GS were mainly inferred from indirect marine proxy records, such as significant increases in ice-rafted debris concentration or variations in the relative abundance and oxygen isotopic content of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral coiling (NPS) (Bond and Lotti, 1995; Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004; Dokken et al., 2013) whose preferential depth habitat lies from a few tens of metres to around 250 m water depth in the Nordic Seas (e.g. Simstich et al., 2003). The occurrence of a pycnocline separating this cold and sea-ice-covered surface layer from warmer Atlantic subsurface waters have also been reported during GS on the basis of these and other planktonic...
2 Methods

2.1 Stratigraphy

For the four studied cores, new age models have been established on the basis of radiocarbon AMS 14C dates coupled to additional tie-points obtained by correlating their magnetic susceptibility records with the NGRIP δ^{18}O signal (North Greenland Ice Core Project members, 2004) (GICC05 timescale; Svensson et al., 2008). This approach is in line with the current consensus that, in this region, increases (or decreases) in magnetite content (here, magnetic susceptibility reflecting deep sea currents strength; Kissel et al., 1999) are synchronous with the onset of GI (or onset of GS; Kissel et al., 1999; Austin and Hibbert, 2012). Cores MD95-2009, MD95-2010 and MD99-2281 also benefit from additional climate-independent age control points supporting these new age models. A more detailed discussion on the age models can be found in the Supporting Information (Sect. S1, Fig. S1, and Table S2 in the Supplement; Martinson et al., 1987; Manthé, 1998; Laj et al., 2004; Rasmussen et al., 2006; Zumaque et al., 2012; Caulle et al., 2013; Reimer et al., 2013; Wolff et al., 2010; Wary et al., 2016).

2.2 Sea-surface conditions

Sea-surface conditions are estimated from a transfer function sensu lato applied to dinocyst – or dinoflagellate cyst – assemblages using the modern analogue technique (de Vernal and Rochon, 2011) (see Sect. S2 for further details on the methodology; Rochon et al., 1999; Head et al., 2001; Telford and Birks, 2005, 2009, 2011; Telford, 2006; Guiot and de Vernal, 2007, 2011a, b; Birks et al., 2010; Radi et al., 2013; de Vernal et al., 2013a, b; Trachsel and Telford, 2016). As dinoflagellates are mostly restricted to the uppermost 50 m water depth (Sarjeant, 1974), they are assumed to directly reflect sea-surface conditions (see Sect. S6 for further details). We provide here new sea-surface reconstructions for cores MD95-2009, MD95-2010 and MD99-2281 based on previously published dinocyst counts (Eynaud et al., 2002; Eynaud, 2003a, b; Zumaque et al., 2011) and extend the previously published reconstructions for core MD99-2285 (Wary et al., 2016; see also Wary et al., 2017 for the complete raw dinocyst counts of core MD99-2285). Our statistical approach provides direct and quantitative reconstructions for mean summer and mean winter SST (with, in the present case, root mean square errors of prediction – RMSEP – of 1.5 and 1.05°C, respectively), mean summer and mean winter sea-surface salinities (SSS; respective RMSEP of 2.4 and 2.3 psu), and mean annual sea-ice cover (SIC) duration (RMSEP of 1.2 months year$^{-1}$).

2.3 Model simulations

We compare our reconstructions with freshwater hosing experiments conducted using five state-of-the-art climate models (Swingedouw et al., 2013). Four of them are coupled ocean–atmosphere models (HadCM3, IPSLCM5A, MPI-ESM, EC-Earth) and one is an ocean-only model (ORCA05) (see Supplement Sect. S3 and Table S3; Gordon et al., 2000; Biastoch et al., 2008; Sterl et al., 2012; Dufresne et al., 2013). One of the models (BCM2) reported in the original study (Swingedouw et al., 2013) has been considered as an outlier and consequently excluded from the present study (see Supplement Sect. S3 for further details). Two types of simulations are considered: (i) the transient control simulations, corresponding to historical simulations without any additional freshwater input, and (ii) the hosing simulations, corresponding to historical simulations with an additional freshwater input of 0.1 Sv released on all the coastal grid points around Greenland with a homogeneous rate during 40 years (over the historical era 1965–2004, except for HadCM3 and MPI-ESM, for which the experiments were performed over the periods 1960–1999 and 1880–1919, respectively). Several variables have been analysed: oceanic temperatures (Fig. 1b and d), surface (2 m) atmospheric temperatures (Fig. 1c), and barotropic stream function (Fig. S6). Anomalies were calculated as the differences between hosing and control experiments averaged over the 4th decade.

Earlier studies have shown that the response (spatial pattern, amplitudes, etc.) to freshwater discharges in the North Atlantic depends on several factors including climatic boundary conditions (Swingedouw et al., 2009; Kageyama et al., 2010). Differences of sensitivity to freshwater perturbations in Last Glacial Maximum (LGM) conditions compared to interglacial conditions have been mainly ascribed to differences in ice-sheet and sea-ice configurations. As millennial climatic variability is strongest during MIS 3, it would have
been optimal to compare our MIS 3 data to simulations run under MIS 3 conditions rather than pre-industrial ones. However, MIS 3 boundary conditions, and especially cryospheric conditions, are poorly constrained and set at an intermediate level between LGM and present-day boundary conditions (Van Meerbeeck et al., 2009). Nevertheless, it will be worth comparing our reconstructions with MIS 3 simulations conducted using the same state-of-the-art multi-model approach with standardized volume and duration of freshwater flux as soon as such simulations will be available.

2.4 Complementary data

To complement our view of the system, we also compare our sea-surface hydrographical reconstructions with (i) the relative abundance of the mesopelagic polar planktonic foraminifera NPS obtained in the same cores (Eynaud et al., 2002; Zumaque et al., 2012; Wary, 2015) and considered as tracer of cold subsurface conditions (see Supplement Sects. S5 and S6 for further details; Carstens and Wefer, 1992; Bauch et al., 1997; Carstens et al., 1997; Hillaire-Marcel and Bilodeau, 2000; Volkmann and Men-
Table 1. SST anomalies.

<table>
<thead>
<tr>
<th>Core</th>
<th>Number of samples</th>
<th>GS SST (°C)</th>
<th>GI SST (°C)</th>
<th>Mean annual SST anomalies (GS–GI; °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GS</td>
<td>GI</td>
<td>mean winter</td>
</tr>
<tr>
<td>MD99-2281</td>
<td>23</td>
<td>0.9</td>
<td>14.6</td>
<td>7.8</td>
</tr>
<tr>
<td>MD99-2285</td>
<td>26</td>
<td>0.9</td>
<td>10.9</td>
<td>5.9</td>
</tr>
<tr>
<td>MD95-2009</td>
<td>12</td>
<td>0.3</td>
<td>11.0</td>
<td>5.6</td>
</tr>
<tr>
<td>MD95-2010</td>
<td>6</td>
<td>0.6</td>
<td>13.4</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Table 2. SIC duration anomalies.

<table>
<thead>
<tr>
<th>Core</th>
<th>Number of samples</th>
<th>GS SIC (months yr⁻¹)</th>
<th>GI SIC (months yr⁻¹)</th>
<th>Mean annual SIC anomalies (GS–GI; months yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GS</td>
<td>GI</td>
<td>mean annual</td>
</tr>
<tr>
<td>MD99-2281</td>
<td>23</td>
<td>0.9</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>MD99-2285</td>
<td>26</td>
<td>3.2</td>
<td>6.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>MD95-2009</td>
<td>12</td>
<td>3.4</td>
<td>4.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>MD95-2010</td>
<td>6</td>
<td>2.0</td>
<td>2.7</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

(see Supplement Sect. S4 for details on the calculation of anomalies; Wolff et al., 2010). Despite lower resolution and sensitivity, SST records from MD95-2010 also denote a positive GS mean annual SST anomaly (+0.9 °C), and cooling during GI is further supported by increases in the relative percentage of the polar, sea-ice-linked dinocyst Islandinium minutum (% I.MIN; Supplement Sect. S2 and Figs. S2 and S3; Rochon et al., 1999; Radi et al., 2013; Heikkinä et al., 2014, 2016). Previous palaeoclimatic studies (e.g. de Vernal et al., 2006) evidenced a similar regional SST seesaw pattern during the LGM, with also sometimes warmer than modern SST in the Nordic Seas, suggesting that such a situation might represent a regular feature for glacial periods.

In order to investigate the mechanisms involved in this regional seesaw, we analyse the multi-model freshwater hosing simulations from Swingedouw et al. (2013). The five-member ensemble mean of the differences between hosing and control experiments shows large surface warming in the Nordic Seas while the rest of the North Atlantic surface is strongly cooled in response to freshwater input around Greenland (Fig. 1b). This regional seesaw pattern is robust in the five individual simulations and consistent with concomitant atmospheric cooling above Greenland (Fig. 1c). While the simulated multi-model mean surface warming is weaker than the palaeodata-derived one, some individual simulations produce SST increase of up to 4.2 °C in the Nordic Seas (Swingedouw et al., 2013). The multi-model simulations also depict significant sea-ice retreat in the Nordic Seas and sea-ice expansion in the Atlantic sector and Labrador Sea (see Fig. 10 in Swingedouw et al., 2013).

An earlier modelling study (Kleinen et al., 2009) also depicted surface warming of the Nordic Seas in response to a freshwater perturbation, independently from the location of the freshwater input. It was attributed to the subsurface propagation of warm Atlantic water masses beneath the cold North Atlantic meltwater lid (resulting from the freshwater input) up to the Norwegian Sea, where they re-emerge and mix with ambient waters. Our model simulations indeed show a positive subsurface heat anomaly south of the Greenland–Scotland sill, located below the North Atlantic freshwater lid (Fig. 1d). This freshwater lid has two important consequences: (i) it prevents oceanic vertical mixing which normally transfers winter surface cooling (due to atmospheric heat fluxes) into subsurface, and (ii) it induces hydrographical reorganizations where subpolar gyre transport decreases but water-mass transport from the subtropics into the Nordic Seas increases, especially along the eastern North Atlantic boundary (see Hátn et al., 2005; Kleinen et al., 2009, and Fig. S6).

Although simulated here under present-day background conditions, this physical process may have occurred during stadials in response to meltwater release and provides an explanation for the regional seesaw SST and SIC pattern. A few earlier palaeoclimatic studies have indeed suggested enhanced advection of warm Atlantic waters through the Continental Slope Current (flowing poleward along the eastern North Atlantic boundary) during stadial intervals (Peck et al., 2008, based on a core from the Porcupine Seabight) in response to a meltwater release detected at GI–GS transitions (see Wary et al., 2016). Compared to the modern climate system, the potentially reduced northward baroclinic volume transport of Atlantic waters associated with a weaker stadial deep-convection in the Nordic Seas could have been counteracted by (i) an increased northward barotropic transport (with
compensation through a larger export at the Denmark Strait for instance), (ii) a larger heat transport due to higher temperature anomalies in the source area, and/or (iii) a greater impact of this northward heat transport on Nordic Seas SST thanks to a larger insolation forcing during MIS3 (Berger and Loutre, 1991).

We now consider subsurface information from our records to complement this mechanism (Fig. 2). Consistent with earlier palaeoceanographic studies within the Nordic Seas (Rasmussen and Thomsen, 2004) and the North Atlantic (Bond and Lotti, 1995; Rasmussen and Thomsen, 2004; Eynaud et al., 2009; Jonkers et al., 2010), all our cores reveal the occurrence of colder planktonic foraminiferal assemblages during GS, characterized here by nearly 100 % of the mesopelagic taxa NPS. This testifies to the presence of cold polar waters (Eynaud et al., 2009) below a few tens of metres of water depth.

Altogether, this implies the following oceanographic situation during GS: a reduced Atlantic meridional overturning circulation due to large meltwater fluxes (related to and/or sustained by iceberg releases), a southward migration of polar waters, a colder and fresher North Atlantic surface, and a small northward subsurface flow of warm Atlantic waters, propagating below the North Atlantic meltwater lid (and below NPS depth habitat) before re-emerging at the surface of the Nordic Sea, above colder polar waters (Fig. 3).

During GS, the upper part of the water column (topmost tens of metres) consists of a layer characterized by fairly high temperatures, notably during summer (Table 1), due to increased heat transport associated with Atlantic waters without heat loss. Dinocyst-derived sea-surface salinities (Table S4) depict relatively low values, around 31.7 psu over the entire study area, which are likely unfavourable to the development of subpolar surface to mid-surface dweller planktonic foraminifera despite fairly high SST (see Sect. S5 for further details; Tolderlund and Bé, 1971). These low salinities are probably due to (i) surface meltwater produced by iceberg releases within the Nordic Seas, evidenced by ice-rafted peaks during GS (Elliott et al., 2001), and (ii) the seasonal melting of (reduced) sea ice and surrounding glaciers. At the base of this warm and low saline layer, the nearly 100 % NPS indicates colder (at least during summer) and probably slightly saltier waters than in the upper layer (Tolderlund and Bé, 1971).

Using indirect proxies, earlier studies (Rasmussen and Thomsen, 2004; Dokken et al., 2013) had suggested the existence of a strong pycnocline separating cold and fresh surface waters from warm and salty Atlantic subsurface waters during GS. Our direct reconstructions depict a more complex temperature-depth pattern but also imply a pycnocline. This stratification of the upper water column results in strong sea-surface seasonality contrasts as depicted by dinocysts during GS (Supplement Sect. S2 and Fig. S4; Locarnini et al., 2010). They are explained by the relatively low thermal inertia of the low salinity surface waters, and the limited winter sea-ice extent. Sea-ice cover duration is less than 3.5 months year$^-$1 at the study sites. Reduced sea-ice formation during GS compared to GI possibly relates to the heat transport by the Atlantic waters, in an orbital context during MIS3 with high summer insolation at 65$^\circ$ N (Berger and Loutre, 1991).

During GI (Fig. 3), coherent sea-surface and subsurface patterns are reconstructed in the four sediment cores, reflecting the disappearance or deepening of the pycnocline. The Norwegian Sea is then characterized by lower SST, reduced seasonal SST contrasts, and 100 % NPS, reflecting a thick homogenous mixed layer consisting of cold polar waters, as well as longer sea-ice cover durations. In the Atlantic sector, core MD99-2281 exhibits less than 50 % NPS, higher SST and reduced seasonal SST contrasts, indicating a thick and weakly stratified mixed layer where polar waters and Atlantic waters mix.

Our new paradigm is thus consistent with a scenario of subsurface and intermediate-depth warming during GS in the North Atlantic (Jonkers et al., 2010; Marcott et al., 2011) and in the Nordic Seas (Rasmussen and Thomsen, 2004; Marcott et al., 2011; Dokken et al., 2013; Ezat et al., 2014), where reconstructed subsurface and intermediate-depth temperatures are considerably lower than our reconstructed summer SST. Such subsurface warming might be due to the insulation by the North Atlantic meltwater lid and downward diffusion of heat in the Nordic Seas.

It is not incompatible with the “brine hypothesis” (Dokken and Jansen, 1999; Dokken et al., 2013) formulated to explain the isotopically light δ^{18}O values measured on NPS during

| Table 3. Correlation coefficients over the 48–30 ka cal BP interval between Greenland temperatures (δ^{18}O; North Greenland Ice Core Project members, 2004; Svensson et al., 2008), North Atlantic (MD99-2281) and Norwegian Sea (MD99-2285, MD95-2009, MD95-2010) winter SST. |
|----------------------------------|------------------|------------------|------------------|------------------|
| | MD99-2281 | MD99-2285 | MD95-2009 | MD95-2010 |
| δ^{18}O | 0.24 | −0.45 | −0.42 | −0.10 |
| Winter SST | | | | |
| MD99-2281 | −0.31 | −0.31 | 0.18 |
| MD99-2285 | 0.59 | −0.08 | |
| MD95-2009 | | −0.11 | |

Table 3. Correlation coefficients over the 48–30 ka cal BP interval between Greenland temperatures (δ^{18}O; North Greenland Ice Core Project members, 2004; Svensson et al., 2008), North Atlantic (MD99-2281) and Norwegian Sea (MD99-2285, MD95-2009, MD95-2010) winter SST.
GS within cores from the southern Nordic Seas, including core MD95-2010 (Dokken and Jansen, 1999), if we take into account changes of upper stratification during GS/GI and seasonality of NPS production period in the Nordic Seas (Simstich et al., 2003). During GS (strong stratification), NPS δ¹⁸O may reflect reduced winter shelf brine production – stored within the subsurface layer inhabited by NPS – rather than the seasonal melting, trapped in surface. During GI (weak stratification), NPS δ¹⁸O may then only reflect the large summer melting of sea ice which produces isotopically heavier waters (Hillaire-Marcel and de Vernal, 2008).

It is worth noting that the isotopically light brine extrusion is produced during winter, when NPS is nearly absent, and is expected to form bottom waters through convective processes without stagnating at the base of the mixed layer.

The reconstructed SST pattern has implications for atmospheric circulation, moisture sources, and interpretation of Greenland ice core water stable isotope records, especially deuterium excess data (Masson-Delmotte et al., 2005) (Fig. 2). Recent monitoring data have revealed that (i) deuterium excess is low for subtropical Atlantic vapour and high for vapour formed at the Arctic sea-ice margin, where high kinetic fractionation occurs due to low relative humidity, and (ii) this vapour deuterium excess is preserved during transportation towards Greenland (Jouzel et al., 2013; Bonne et al., 2015). Higher deuterium excess recorded during GS (Masson-Delmotte et al., 2005) may reflect enhanced contribution of moisture from the Nordic Seas towards Greenland (as also previously suggested for Heinrich stadial 4 interval; Wary et al., 2016), when the Norwegian Sea appears relatively warm and surrounded by sea-ice-covered areas (providing low humidity air masses), while the North Atlantic surface is cold and marked by large sea-ice expansion (Hillaire-Marcel and de Vernal, 2008).

4 Conclusions

Our description of regional patterns and oceanographic processes occurring during MIS3 within the North Atlantic and the Nordic Seas is thus consistent with all existing palaeoclimate information and with climate simulations in response to freshwater forcing. During GS, we evidence large surface warming in the Norwegian Sea, in response to high-latitude freshwater release and subsequent regional ocean reorganizations. Such warming might have enhanced iceberg releases from the bordering ice sheets, and might have therefore constituted a positive feedback for freshwater release. The origin of the freshwater-forcing input is still enigmatic, and may be related to, or precede (Barker et al., 2015; Wary et al., 2016), massive iceberg calving episodes. Our findings thus highlight an original case study for climate–ice-sheet interactions, and calls for additional numerical simulations focused on ocean–sea-ice–atmosphere interactions during MIS 3 millennial climatic events. As a first step, evidencing such a warming of
the Nordic Seas in response to a standardized freshwater release in the subpolar gyre in an ensemble of state-of-the-art climate models under MIS3 conditions will be a prerequisite.

Data availability. Data used in this study are available upon request to Mélanie Wary (melanie.wary@u-bordeaux.fr) and Frédérique Eynaud (frederique.eynaud@u-bordeaux.fr).

The Supplement related to this article is available online at https://doi.org/10.5194/cp-13-729-2017-supplement.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Marie-Hélène Castéra for technical assistance, Didier Roche, Florian Ziemen, Uwe Mikolajewicz, Maria Fernanda Sánchez Góñi, Masa Kaye, Mary Elliot, Aurélie Penaud, and Fabienne Marret-Davies for discussions, and Sandrine Manthé for MD95-2009 and MD95-2010 planktonic foraminiferal counts. Analyses performed on MD99-2285 were supported by the French INSU (Institut National des Sciences de l’Univers) programme LEFE (Les enveloppes fluides et l’environnement) within the frame of the EVE (Evolution et variabilité du climat à l’échelle globale) 2009–2011 project “RISCC: Rôle des Ice-Shelves dans le Changement Climatique” and of the IMAGO (Interactions multiples dans l’atmosphère, la glace et l’océan) 2013 project “ICE-BIO-RAM: Impact des Changements Environnementaux sur la BIOdiversité marine lors des Réchauffements Abrupts du climat”, this latter being also supported by the INTERRVIE (Interactions Terre/Vie) – TS (Terre solide) INSU programme. We also acknowledge financial supports and facilities of the ARTEMIS 14C AMS French INSU project. The research leading to these results also benefited from fundings from the European Union’s Seventh Framework programme (FP7/2007-2013) under grant agreement no 243908, “Past4Future.
Climate change – Learning from the past climate” and from Agence Nationale de la Recherche (ANR) “Greenland” project (grant ANR-10-CEP1-0008).

Edited by: David Thornalley
Reviewed by: three anonymous referees

References

Bonne, J.-L., Steen-Larsen, H. C., Risi, C., Werner, M., Sode-...

Ezat, M. M., Rasmussen, T. L., and Groeneveld, J.: Persistent inter-

termediate water warming during cold stadials in the southeastern

Nordic seas during the past 65 k.y, Geology, 42, 663–666,

heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168,

Guiot, J. and de Vernal, A.: Transfer Functions: Methods for Quan-

Guiot, J. and de Vernal, A.: Is spatial autocorrelation in-

Guiot, J. and de Vernal, A.: QSR Correspondence “Is spatial autocorrelation introducing biases in the apparent accuracy of palaeoclimatic reconstructions?” Reply to Telford and Birks, Quaternary Sci. Rev., 30, 3214–3216,

Head, M. J., Harland, R., and Matthiessen, J.: Cold marine indica-

tors of the late Quaternary: the new dinoflagellate cyst genus Is-

landinium and related morphotypes, J. Quaternary Sci., 16, 621–

Heikkilä, M., Pospelova, V., Hochheim, K. P., Kuzyk, Z. Z. A.,

Stern, G. A., Barber, D. G., and Macdonald, R. W.: Surface sedi-

ment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling, Mar. Micropaleontol., 106, 79–109,

Hillaire-Marcel, C. and de Vernal, A.: Stable isotope

clue to episodic sea ice formation in the glacial

North Atlantic, Earth Planet. Sc. Lett., 268, 143–150,

Hillaire-Marcel, C. De Vernal, A., Polyak, L., and Darby, D.: Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sedi-

ments – Implications for the Holocene paleoenography of the western Arctic, Quaternary Sci. Rev., 23, 245–260,

Hoff, U., Rasmussen, T. L., Stein, R., Ezat, M. M., and

Fahl, K.: Sea ice and millennial-scale climate variability in the

Nordic seas 90 kyr ago to present, Nat. Commun., 7,

https://doi.org/10.1038/ncomms12247, 2016.

Jonkers, L., Moros, M., Prins, M. A., Dokken, T., Dahl, C. A., Di-

https://doi.org/10.1016/j.quascirev.2010.03.014, 2010.

Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D. and Von Storch, J. S.: Characteristics of the ocean simulations in the Max Planck Insti-

tute Ocean Model (MPIOM) the ocean component of the MPI-

Earth system model, J. Adv. Model. Earth Syst., 5, 422–446,

Kageyama, M., Paul, A., Roche, D. M., and Van Meerbeeck, C. J.: Modelling glacial climatic millennial-scale variabil-

ity related to changes in the Atlantic meridional overturning circulation: a review, Quaternary Sci. Rev., 29, 2931–2956,

https://doi.org/10.1016/j.quascirev.2010.05.029, 2010.

Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 ky r b2k from the NGRIP ice core, Clim. Past, 10, 887–902,

Kleinen, T., Osborn, T. J., and Griffa, K. R.: Sensitivity of climate response to variations in freshwater hosing location, Ocean Dy-

Kretschmer, K., Kucera, M., and Schulz, M.: Modeling the distribu-

tion and seasonality of Neogloboquadrina pachyderma in the North Atlantic Ocean during Heinrich Stadal 1, Paleoenogra-

Laj, C., Kissel, C., and Beer, J.: High Resolution Global Paleoin-

Li, C., Battisti, D. S., and Bitz, C. M.: Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals?, J. Climate, 23, 4547–5475,

Manthé, S.: Variabilité de la circulation thermohaline glaciaire et

Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P.,
Springer, S. R., Liu, Z., Otto-Bliesner, B. L., Carlson, A. E.,
Ungerer, A., and Padman, J.: Ice-shelf collapse from subsurface
warming as a trigger for Heinrich events, P Natl. Acad. Sci.

Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T.
C., and Shackleton, N. J.: Age dating and the orbital theory of
the ice ages: development of a high-resolution 0 to 300,000-year

Masson-Delmotte, V., Jouzel, J., Landais, A., Steenvenard, M.,
Johnsen, S. J., White, J. W. C., Werner, M., Sveinjorns-
dottir, A., and Fuhrer, K.: Atmospheric science: GRIP
deuterium excess reveals rapid and orbital-scale changes in
Greenland moisture origin, Science, 309, 118–121,
https://doi.org/10.1126/science.1108575, 2005.

Müller, J. and Stein, R.: High-resolution record of late glacial and
deglacial sea ice changes in Fram Strait corroborates ice–ocean
interactions during abrupt climate shifts, Earth Planet. Sc. Lett.,
403, 446–455, 2014.

North Greenland Ice Core Project members: High-resolution
record of Northern Hemisphere climate extending into
the last interglacial period, Nature, 431, 147–151,

Peck, V. L., Hall, I. R., Zahn, R., and Eldridge, H.: Milennium-
scale surface and subsurface paleothermometry from the
north-east Atlantic, 55–8 ka BP, Paleoceanography, 23, PA3221,

Radi, T., Bonnet, S., Cormier, M. A., de Vernal, A., Durantou, L.,
Faubert, É., Head, M. J., Henry, M., Pospelova, V., Rochon, A.,
and Van Nieuwenhove, N.: Operational taxonomy and (paleo-
)autecology of round, brown, spiny dinoflagellate cysts from the
Quaternary of high northern latitudes, Mar. Micropaleontol., 98,
41–57, 2013.

Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen,
J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-
L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M.,
Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.
E., and Ruth, U.: A new Greenland ice core chronology for the
last glacial termination, J. Geophys. Res., 111, D06102,

Rasmussen, T. L. and Thomsen, E.: The role of the North
Atlantic Drift in the millennial timescale glacial climate
fluctuations, Palaeogeogr. Palaeoc., 210, 101–116,

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G.,
Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., and
Friedrich, M.: IntCal13 and Marine13 radiocarbon age calibration
curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887,
2013.

Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., and Head,
M. J., (Eds.): Distribution of dinoflagellate cysts in surface sedi-
ments from the North Atlantic Ocean and adjacent basins and
quantitative reconstruction of sea-surface parameters, AASP spe-
cial pub., Dallas, Texas, 1999.

Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ18O sig-
nals of Neogloboquadrina pachyderma (s) and Turborotalita
quinqueloba show thermal stratification structure in Nordic Seas,

Sterl, A., Bintanja, R., Brodeau, L., Gleeson, E., Koenigk, T.,
Schmith, T., Semmler, T., Severijns, C., Wyser, K., and Yang, S.: A look at the ocean in the EC-Earth climate model, Clim. Dy-
nam., 39, 2631–2657, https://doi.org/10.1007/s00382-011-1239-
2, 2012.

Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-
Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Par-
renin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I.,
Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland
stratigraphic ice core chronology, Clim. Past, 4, 47–57,

Swingedouw, D., Mignot, J., Braconnot, P., Mosquet, E.,
Kageyama, M., and Alkama, R.: Impact of freshwater release in
the North Atlantic under different climate conditions in an

Swingedouw, D., Rodehacke, C. B., Behrens, E., Menary, M.,
Olsen, S. M., Gao, Y., Mikolajewicz, U., Mignot, J., and Bi-
astoch, A.: Decadal fingerprints of freshwater discharge around
Greenland in a multi-model ensemble, Clim. Dynam., 41, 695–

Telford, R. J.: Limitations of dinoflagellate cyst trans-
fer functions, Quaternary Sci. Rev., 25, 1375–1382,

Telford, R. J. and Birks, H. J. B.: The secret assumption of transfer-
functions: problems with spatial autocorrelation in evaluat-
ing model performance, Quaternary Sci. Rev., 24, 2173–2179,

Telford, R. J. and Birks, H. J. B.: Evaluation of transfer func-
tions in spatially structured environments, Quaternary Sci. Rev.,
2009.

Telford, R. J. and Birks, H. J. B.: QSR Correspondence “Is spa-
tial autocorrelation introducing biases in the apparent accuracy
of palaeoclimatic reconstructions?”, Quaternary Sci. Rev., 30,

Tolderlund, D. S. and Bé, A. W. H.: Seasonal Distribution of Plank-
tonic Foraminifera in the Western North Atlantic, Micropaleon-

transfer-function performances in spatially structured environ-
ments, Clim. Past, 12, 1215–1223, https://doi.org/10.5194/cp-
12-1215-2016, 2016.

Marine Isotope Stage 3 and Last Glacial Maximum climates dif-er? – Perspectives from equilibrium simulations, Clim. Past, 5,

Volkmann, R. and Mensch, M.: Stable isotope composition (δ18O,
δ13C) of living planktic foraminifera in the outer Laptev
Sea and the Fram Strait, Mar. Micropaleontol., 42, 163–188,

Wary, M.: Rôle des conditions océaniques et des ice-shelves
en périphérie des calottes européennes lors des événements
climatiques abrupts de la dernière période glaciaire, PhD

