Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 13, issue 7 | Copyright
Clim. Past, 13, 833-853, 2017
https://doi.org/10.5194/cp-13-833-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Jul 2017

Research article | 13 Jul 2017

Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

Camille Bréant et al.
Viewed
Total article views: 940 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
579 286 75 940 109 37 88
  • HTML: 579
  • PDF: 286
  • XML: 75
  • Total: 940
  • Supplement: 109
  • BibTeX: 37
  • EndNote: 88
Views and downloads (calculated since 12 Oct 2016)
Cumulative views and downloads (calculated since 12 Oct 2016)
Viewed (geographical distribution)
Total article views: 939 (including HTML, PDF, and XML) Thereof 933 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved (final revised paper)
No saved metrics found.
Saved (discussion paper)
No saved metrics found.
Discussed (final revised paper)
No discussed metrics found.
Discussed (discussion paper)
No discussed metrics found.
Latest update: 18 Sep 2018
Publications Copernicus
Download
Short summary
All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica, to the LGGE firn densification model.
All firn densification models applied to deglaciations show a large disagreement with δ15N...
Citation
Share