Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 13, issue 7 | Copyright
Clim. Past, 13, 833-853, 2017
https://doi.org/10.5194/cp-13-833-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Jul 2017

Research article | 13 Jul 2017

Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

Camille Bréant et al.
Related authors
The penultimate deglaciation: protocol for PMIP4 transient numerical simulations between 140 and 127 ka
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106,https://doi.org/10.5194/cp-2018-106, 2018
Manuscript under review for CP
Assessing the robustness of Antarctic temperature reconstructions over the past two millennia using pseudoproxy and data assimilation experiments
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-90,https://doi.org/10.5194/cp-2018-90, 2018
Manuscript under review for CP
Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Anaïs Orsi, and Martin Werner
Clim. Past, 14, 923-946, https://doi.org/10.5194/cp-14-923-2018,https://doi.org/10.5194/cp-14-923-2018, 2018
Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393-2418, https://doi.org/10.5194/gmd-11-2393-2018,https://doi.org/10.5194/gmd-11-2393-2018, 2018
Ice core evidence for decoupling between mid-latitude atmospheric water cycle and Greenland temperature during the last deglaciation
Amaëlle Landais, Emilie Capron, Valérie Masson-Delmotte, Samuel Toucanne, Rachael Rhodes, Trevor Popp, Bo Vinther, Bénédicte Minster, and Frédéric Prié
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-65,https://doi.org/10.5194/cp-2018-65, 2018
Revised manuscript accepted for CP
Related subject area
Subject: Ice Dynamics | Archive: Ice Cores | Timescale: Milankovitch
Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729-748, https://doi.org/10.5194/cp-12-729-2016,https://doi.org/10.5194/cp-12-729-2016, 2016
Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr
S. Fujita, F. Parrenin, M. Severi, H. Motoyama, and E. W. Wolff
Clim. Past, 11, 1395-1416, https://doi.org/10.5194/cp-11-1395-2015,https://doi.org/10.5194/cp-11-1395-2015, 2015
Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489-2505, https://doi.org/10.5194/cp-9-2489-2013,https://doi.org/10.5194/cp-9-2489-2013, 2013
An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715-1731, https://doi.org/10.5194/cp-9-1715-2013,https://doi.org/10.5194/cp-9-1715-2013, 2013
Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0–145 kyr BP
F. Parrenin, J.-R. Petit, V. Masson-Delmotte, E. Wolff, I. Basile-Doelsch, J. Jouzel, V. Lipenkov, S. O. Rasmussen, J. Schwander, M. Severi, R. Udisti, D. Veres, and B. M. Vinther
Clim. Past, 8, 1031-1045, https://doi.org/10.5194/cp-8-1031-2012,https://doi.org/10.5194/cp-8-1031-2012, 2012
Cited articles
Alley, R. B.: Firn densification by grain-boundary sliding: a first model, J. Phys. Colloq., 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987.
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015.
Anderson, D. L. and Benson, C. S.: The densification and diagenesis of snow, in Ice and Snow: Properties, Processes and Applications, pp. 391–411, MIT Press., 1963.
Arnaud, L.: Modélisation de la transformation de la neige en glace à la surface des calottes polaires; Etude du transport des gaz dans ces milieux poreux, PhD Thesis, Université Joseph Fournier – Grenoble 1, 294 pp., 1997.
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in, Phys. Ice Core Rec., 26, 39–44, 2000.
Publications Copernicus
Download
Short summary
All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica, to the LGGE firn densification model.
All firn densification models applied to deglaciations show a large disagreement with δ15N...
Citation
Share