Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 14, issue 8 | Copyright
Clim. Past, 14, 1253-1273, 2018
https://doi.org/10.5194/cp-14-1253-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Aug 2018

Research article | 20 Aug 2018

Climate impact on the development of Pre-Classic Maya civilisation

Kees Nooren1, Wim Z. Hoek1, Brian J. Dermody1,2, Didier Galop3, Sarah Metcalfe4, Gerald Islebe5, and Hans Middelkoop1 Kees Nooren et al.
  • 1Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands
  • 2Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC Utrecht, the Netherlands
  • 3Université Jean Jaurès, CNRS, UMR 5602 GEODE, 31058 Toulouse, France
  • 4School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
  • 5El Colegio de la Frontera Sur, Unidad Chetumal Herbario, Chetumal, AP 424 Quintana Roo, Mexico

Abstract. The impact of climate change on the development and disintegration of Maya civilisation has long been debated. The lack of agreement among existing palaeoclimatic records from the region has prevented a detailed understanding of regional-scale climatic variability, its climatic forcing mechanisms and its impact on the ancient Maya. We present two new palaeo-precipitation records for the central Maya lowlands, spanning the Pre-Classic period (1800BCE–250CE), a key epoch in the development of Maya civilisation. A beach ridge elevation record from world's largest late Holocene beach ridge plain provides a regional picture, while Lake Tuspan's diatom record is indicative of precipitation changes at a local scale. We identify centennial-scale variability in palaeo-precipitation that significantly correlates with the North Atlantic δ14C atmospheric record, with a comparable periodicity of approximately 500 years, indicating an important role of North Atlantic atmospheric–oceanic forcing on precipitation in the central Maya lowlands. Our results show that the Early Pre-Classic period was characterised by relatively dry conditions, shifting to wetter conditions during the Middle Pre-Classic period, around the well-known 850BCE (2.8ka) event. We propose that this wet period may have been unfavourable for agricultural intensification in the central Maya lowlands, explaining the relatively delayed development of Maya civilisation in this area. A return to relatively drier conditions during the Late Pre-Classic period coincides with rapid agricultural intensification in the region and the establishment of major cities.

Download & links
Publications Copernicus
Download
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new...
Citation
Share