Articles | Volume 14, issue 10
https://doi.org/10.5194/cp-14-1441-2018
https://doi.org/10.5194/cp-14-1441-2018
Research article
 | 
18 Oct 2018
Research article |  | 18 Oct 2018

The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology

Leah Birch, Timothy Cronin, and Eli Tziperman

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Modeled storm surge changes in a warmer world: the Last Interglacial
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023,https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
No changes in overall AMOC strength in interglacial PMIP4 time slices
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023,https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
On the importance of moisture conveyor belts from the tropical East Pacific for wetter conditions in the Atacama Desert during the Mid-Pliocene
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-72,https://doi.org/10.5194/cp-2022-72, 2022
Revised manuscript accepted for CP
Short summary
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022,https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022,https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary

Cited articles

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007. a
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, 2013. a
Andrews, J. and Barry, R.: Glacial inception and disintegration during the last glaciation, Ann. Rev. Earth Pl. Sc., 6, 205–228, 1978. a
Andrews, J. and Mahaffy, M.: Growth rate of the Laurentide Ice Sheet and sea level lowering (with emphasis on the 115,000 BP sea level low), Quaternary Res., 6, 167–183, 1976. a, b
Andrews, J. and Miller, G.: Quarternary history of northern Cumberland peninsula, Baffin Island, NWT, Canada: Part IV: Maps of the present glaciation limits and lowest equilibrium line altitude for north and south Baffin Island, Arctic and Alpine Research, 45–59, 1972. a
Download
Short summary
We investigate the regional dynamics at the beginning of the last ice age, using a nested configuration of the Weather Research and Forecasting (WRF) model with a simple ice flow model. We find that ice sheet height causes a negative feedback on continued ice growth by interacting with the atmospheric circulation, causing warming on Baffin Island, and inhibiting the initiation of the last ice age. We conclude that processes at larger scales are needed to overcome the regional warming effect.