Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.48 CiteScore
    3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
CP | Articles | Volume 14, issue 11
Clim. Past, 14, 1819-1850, 2018
https://doi.org/10.5194/cp-14-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Clim. Past, 14, 1819-1850, 2018
https://doi.org/10.5194/cp-14-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 Nov 2018

Research article | 28 Nov 2018

Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle

Olivier Cartapanis et al.
Viewed  
Total article views: 1,920 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,334 551 35 1,920 47 27 42
  • HTML: 1,334
  • PDF: 551
  • XML: 35
  • Total: 1,920
  • Supplement: 47
  • BibTeX: 27
  • EndNote: 42
Views and downloads (calculated since 02 May 2018)
Cumulative views and downloads (calculated since 02 May 2018)
Viewed (geographical distribution)  
Total article views: 1,692 (including HTML, PDF, and XML) Thereof 1,680 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 25 Mar 2019
Publications Copernicus
Download
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the...
Citation