Research article
30 Nov 2018
Research article | 30 Nov 2018
Sedproxy: a forward model for sediment-archived climate proxies
Andrew M. Dolman and Thomas Laepple
Related authors
Archival processes of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018,https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018,https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Archival of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263,https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
Clim. Past, 12, 1565–1581, https://doi.org/10.5194/cp-12-1565-2016,https://doi.org/10.5194/cp-12-1565-2016, 2016
Short summary
Related subject area
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017,https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016,https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015,https://doi.org/10.5194/cp-11-855-2015, 2015
Long-term variations in Iceland–Scotland overflow strength during the Holocene
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013,https://doi.org/10.5194/cp-9-2073-2013, 2013
Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach
V. Nieto-Moreno, F. Martínez-Ruiz, S. Giralt, F. Jiménez-Espejo, D. Gallego-Torres, M. Rodrigo-Gámiz, J. García-Orellana, M. Ortega-Huertas, and G. J. de Lange
Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011,https://doi.org/10.5194/cp-7-1395-2011, 2011
Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach
C. Martín-Puertas, F. Jiménez-Espejo, F. Martínez-Ruiz, V. Nieto-Moreno, M. Rodrigo, M. P. Mata, and B. L. Valero-Garcés
Clim. Past, 6, 807–816, https://doi.org/10.5194/cp-6-807-2010,https://doi.org/10.5194/cp-6-807-2010, 2010
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009,https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca
Thermometry in Planktonic Foraminifera from a Sediment Trap Time Series,
Paleoceanography, 18, 1050,
https://doi.org/10.1029/2002PA000846, 2003.
a,
b,
c
Anderson, D. M.: Attenuation of Millennial-Scale Events by Bioturbation in
Marine Sediments, Paleoceanography, 16, 352–357, 2001.
a,
b
Barker, S., Greaves, M., and Elderfield, H.: A Study of Cleaning Procedures
Used for Foraminiferal
Mg∕Ca Paleothermometry, Geochem.
Geophy. Geosy., 4, 8407,
https://doi.org/10.1029/2003GC000559, 2003.
a
Barker, S., Cacho, I., Benway, H., and Tachikawa, K.: Planktonic Foraminiferal
Mg∕Ca as a Proxy for Past Oceanic Temperatures: A Methodological
Overview and Data Compilation for the Last Glacial Maximum, Quaternary
Sci. Rev., 24, 821–834,
https://doi.org/10.1016/j.quascirev.2004.07.016, 2005.
a
Barker, S., Broecker, W., Clark, E., and Hajdas, I.: Radiocarbon Age Offsets of
Foraminifera Resulting from
Differential Dissolution and Fragmentation within
the Sedimentary Bioturbated Zone, Paleoceanography, 22, PA2205,
https://doi.org/10.1029/2006PA001354, 2007.
a
Benthien, A. and Müller, P. J.: Anomalously Low Alkenone Temperatures Caused
by Lateral Particle and Sediment Transport in the Malvinas Current
Region, Western Argentine Basin, Deep-Sea Res. Pt. I, 47, 2369–2393 2000. a
Berger, W. H. and Heath, G. R.: Vertical Mixing in Pelagic Sediments, J. Mar. Res., 26, 134–143, 1968.
a,
b
Black, D. E., Abahazi, M. A., Thunell, R. C., Kaplan, A., Tappa, E. J., and
Peterson, L. C.: An 8-Century Tropical Atlantic SST Record from the
Cariaco Basin: Baseline Variability, Twentieth-Century Warming, and
Atlantic Hurricane Frequency, Paleoceanography, 22, PA4204,
https://doi.org/10.1029/2007PA001427, 2007.
a
Boudreau, B. P.: Mean Mixed Depth of Sediments: The Wherefore and the Why,
Limnol. Oceanogr., 43, 524–526, 1998. a
Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat, B.,
Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli, G., and Lirer, F.: Sea
Surface Temperature Variability in the Central-Western Mediterranean Sea
during the Last 2700 Years: A Multi-Proxy and Multi-Record Approach, Clim. Past, 12, 849–869,
https://doi.org/10.5194/cp-12-849-2016, 2016.
a
Conte, M. H., Thompson, A., Lesley, D., and Harris, R. P.: Genetic and
Physiological Influences on the Alkenone/Alkenoate versus Growth Temperature
Relationship in Emiliania Huxleyi and Gephyrocapsa Oceanica,
Geochim. Cosmochim. Ac., 62, 51–68, 1998. a
Conte, M. H., Sicre, M.-A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global Temperature Calibration of the
Alkenone Unsaturation Index (UK
′37) in Surface Waters and Comparison
with Surface Sediments, Geochem. Geophy. Geosy., 7, Q02005,
https://doi.org/10.1029/2005GC001054, 2006.
a
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson,
D.: PRYSM: An Open-Source Framework for PRoxY System Modeling,
with Applications to Oxygen-Isotope Systems, J. Adv. Model.
Earth Sy., 7, 1220–1247,
https://doi.org/10.1002/2015MS000447, 2015.
a
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.: Improving
Coral-Base Paleoclimate Reconstructions by Replicating 350 Years of Coral
Sr/Ca Variations, Palaeogeogr. Palaeocl.,
373, 6–24,
https://doi.org/10.1016/j.palaeo.2012.08.019, 2013.
a
Douglass, A. E.: Climatic Cycles and Tree-Growth, Carnegie
Institution of Washington, Washington, 1919. a
Dueñas-Bohórquez, A., da Rocha, R. E., Kuroyanagi, A., de Nooijer,
L. J., Bijma, J., and Reichart, G.-J.: Interindividual Variability and
Ontogenetic Effects on Mg and Sr Incorporation in the Planktonic
Foraminifer Globigerinoides Sacculifer, Geochim. Cosmochim. Ac.,
75, 520–532,
https://doi.org/10.1016/j.gca.2010.10.006, 2011.
a
Duplessy, J. C., Lalou, C., and Vinot, A. C.: Differential Isotopic
Fractionation in Benthic Foraminifera and Paleotemperatures
Reassessed, Science, 168, 250–251,
https://doi.org/10.1126/science.168.3928.250,
1970.
a
Elderfield, H. and Ganssen, G.: Past Temperature and
Δ18O of Surface Ocean Waters Inferred from
Foraminiferal
Mg∕Ca Ratios, Nature, 405, 442–445,
https://doi.org/10.1038/35013033, 2000.
a
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of Proxy System Modeling in High Resolution Paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
a,
b
Fairbanks, R. G. and Wiebe, P. H.: Foraminifera and Chlorophyll Maximum:
Vertical Distribution, Seasonal Succession, and Paleoceanographic
Significance, Science, 209, 1524–1526,
https://doi.org/10.1126/science.209.4464.1524, 1980.
a
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global
distribution of planktonic foraminifera using a dynamic ecosystem model,
Biogeosciences, 5, 891–911,
https://doi.org/10.5194/bg-5-891-2008, 2008.
a,
b,
c
Fraile, I., Mulitza, S., and Schulz, M.: Modeling Planktonic Foraminiferal
Seasonality: Implications for Sea-Surface Temperature Reconstructions,
Mar. Micropaleontol., 72, 1–9,
https://doi.org/10.1016/j.marmicro.2009.01.003,
2009.
a
Ganssen, G. M., Peeters, F. J. C., Metcalfe, B., Anand, P., Jung, S. J. A.,
Kroon, D., and Brummer, G.-J. A.: Quantifying Sea Surface Temperature Ranges
of the Arabian Sea for the Past 20 000 Years, Clim. Past, 7,
1337–1349,
https://doi.org/10.5194/cp-7-1337-2011, 2011.
a
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I.,
Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A.,
Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D.,
Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G.,
Labeyrie, L., Lea, D. W., Marchitto, T., Martínez-Botí, M. A., Mortyn,
P. G., Ni, Y., Nuernberg, D., Paradis, G., Pena, L., Quinn, T., Rosenthal,
Y., Russell, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa,
E., Thunell, R., and Wilson, P. A.: Interlaboratory Comparison Study of
Calibration Standards for Foraminiferal
Mg∕Ca Thermometry,
Geochem. Geophy. Geosy., 9, 1–27, 2008.
a,
b
Groeneveld, J., Hathorne, E., Steinke, S., DeBey, H., Mackensen, A., and
Tiedemann, R.: Glacial Induced Closure of the Panamanian Gateway during
Marine Isotope Stages (MIS) 95–100 (
∼2.5 Ma),
Earth Planet. Sc. Lett., 404, 296–306,2014. a
Haarmann, T., Hathorne, E. C., Mohtadi, M., Groeneveld, J., Kölling, M., and
Bickert, T.: Mg/Ca Ratios of Single Planktonic Foraminifer Shells and the
Potential to Reconstruct the Thermal Seasonality of the Water Column,
Paleoceanography, 26, PA3218,
https://doi.org/10.1029/2010PA002091, 2011.
a,
b
Ho, S. L. and Laepple, T.: Flat Meridional Temperature Gradient in the Early
Eocene in the Subsurface Rather than Surface Ocean, Nat. Geosci., 9,
606–610,
https://doi.org/10.1038/ngeo2763, 2016.
a
Hoefs, M. J. L., Versteegh, G. J. M., Rijpstra, W. I. C., de Leeuw, J. W., and
Damsté, J. S. S.: Postdepositional Oxic Degradation of Alkenones:
Implications for the Measurement of Palaeo Sea Surface Temperatures,
Paleoceanography, 13, 42–49,
https://doi.org/199810.1029/97PA02893, 1998.
a
Hönisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M.,
Arbuszewski, J., deMenocal, P., Rosenthal, Y., Russell, A. D., and
Elderfield, H.: The Influence of Salinity on
Mg∕Ca in Planktic
Foraminifers – Evidence from Cultures, Core-Top Sediments and
Complementary
δ18O, Geochim. Cosmochim. Ac., 121,
196–213,
https://doi.org/10.1016/j.gca.2013.07.028, 2013.
a
Jonkers, L. and Kučera, M.: Quantifying the Effect of Seasonal and
Vertical Habitat Tracking on Planktonic Foraminifera Proxies, Clim.
Past, 13, 573–586,
https://doi.org/10.5194/cp-13-573-2017, 2017.
a,
b
Killingley, J. S., Johnson, R. F., and Berger, W. H.: Oxygen and Carbon
Isotopes of Individual Shells of Planktonic Foraminifera from
Ontong-Java Plateau, Equatorial Pacific, Palaeogeogr.
Palaeocl., 33, 193–204,
https://doi.org/10.1016/0031-0182(81)90038-9, 1981.
a,
b
Kim, J.-H., Huguet, C., Zonneveld, K. A., Versteegh, G. J., Roeder, W.,
Sinninghe Damsté, J. S., and Schouten, S.: An Experimental Field Study to
Test the Stability of Lipids Used for the TEX86 and Palaeothermometers,
Geochim. Cosmochim. Ac., 73, 2888–2898,
https://doi.org/10.1016/j.gca.2009.02.030, 2009.
a
Klein, F. and Goosse, H.: Reconstructing East African Rainfall and Indian
Ocean Sea Surface Temperatures over the Last Centuries Using Data
Assimilation, Clim. Dynam., 1–21,
https://doi.org/10.1007/s00382-017-3853-0,
2017.
a
Klein, F. and Goosse, H.: Reconstructing East African rainfall and Indian
mOcean sea surface temperatures over the last centuries using data
assimilation, Clim. Dynam., 50, 3909–3929, https://doi.org/10.1007/s00382-017-3853-0,
2018.
Koutavas, A. and Joanides, S.: El Niño-Southern Oscillation
Extrema in the Holocene and Last Glacial Maximum, Paleoceanography,
27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
a
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Modeling seasonal
and vertical habitats of planktonic foraminifera on a global scale,
Biogeosciences, 15, 4405–4429,
https://doi.org/10.5194/bg-15-4405-2018,
2018.
a
Laepple, T. and Huybers, P.: Reconciling Discrepancies between Uk37 and
Mg/Ca Reconstructions of Holocene Marine Temperature Variability,
Earth Planet. Sc. Lett., 375, 418–429,
https://doi.org/10.1016/j.epsl.2013.06.006, 2013.
a,
b,
c,
d,
e,
f
Laepple, T. and Huybers, P.: Ocean Surface Temperature Variability: Large
Model-Data Differences at Decadal and Longer Periods, P.
Natl. Acad. Sci. USA, 111, 16682–16687,
https://doi.org/10.1073/pnas.1412077111, 2014.
a
Leduc, G., Schneider, R., Kim, J., and Lohmann, G.: Holocene and Eemian Sea
Surface Temperature Trends as Revealed by Alkenone and Mg/Ca
Paleothermometry, Quaternary Sci. Rev., 29, 989–1004, 2010.
a,
b,
c,
d
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bølling-Allerød
Warming, Science, 325, 310–314,
https://doi.org/10.1126/science.1171041, 2009.
a
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The Holocene
Temperature Conundrum, P. Natl. Acad. Sci. USA, 111,
E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
a
Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G., and Kim, J.-H.: A
Model-Data Comparison of the Holocene Global Sea Surface
Temperature Evolution, Clim. Past, 9, 1807–1839,
https://doi.org/10.5194/cp-9-1807-2013, 2013.
a,
b
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S.,
Howa, H., and Jorissen, F.: Modelling Planktic Foraminifer Growth and
Distribution Using an Ecophysiological Multi-Species Approach,
Biogeosciences, 8, 853–873,
https://doi.org/10.5194/bg-8-853-2011, 2011.
a
Lougheed, B. C., Metcalfe, B., Ninnemann, U. S., and Wacker, L.: Moving
beyond the age-depth model paradigm in deep-sea palaeoclimate archives: dual
radiocarbon and stable isotope analysis on single foraminifera, Clim. Past,
14, 515–526,
https://doi.org/10.5194/cp-14-515-2018, 2018.
a
Matisoff, G.: Mathematical Models of Bioturbation, in: Animal-Sediment
Relations: The Biogenic Alteration of Sediments, edited by: McCall, P. L. and
Tevesz, M. J. S., Springer, New York, 289–330, 1982. a
Mekik, F., François, R., and Soon, M.: A Novel Approach to Dissolution
Correction of
Mg∕Ca Based Paleothermometry in the
Tropical Pacific, Paleoceanography, 22, 1–12,
https://doi.org/10.1029/2007PA001504, 2007.
a,
b
Mix, A.: The Oxygen-Isotope Record of Glaciation, in: North America and
Adjacent Oceans during the Last Deglaciation., vol. K-3 of Geology of
North America, Geol. Soc. Am., 3, 111–135, 1987.
a,
b
Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R., Müller,
P. J., Grootes, P. M., and Rullkötter, J.: Asynchronous Alkenone and
Foraminifera Records from the Benguela Upwelling System, Geochim.
Cosmochim. Ac., 67, 2157–2171,
https://doi.org/10.1016/S0016-7037(03)00168-6, 2003.
a
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé,
A.: Calibration of the Alkenone Paleotemperature Index U37K
′ Based on
Core-Tops from the Eastern South Atlantic and the Global Ocean (60
∘ N–60
∘ S), Geochim. Cosmochim. Ac., 62, 1757–1772,
https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
a
Münch, T., Kipfstuhl, S., Freitag, J., Meyer, H., and Laepple, T.: Regional
Climate Signal vs. Local Noise: A Two-Dimensional View of Water Isotopes in
Antarctic Firn at Kohnen Station, Dronning Maud Land, Clim. Past,
12, 1565–1581,
https://doi.org/10.5194/cp-12-1565-2016, 2016.
a
Münch, T., Kipfstuhl, S., Freitag, J., Meyer, H., and Laepple, T.:
Constraints on Post-Depositional Isotope Modifications in East Antarctic
Firn from Analysing Temporal Changes of Isotope Profiles, The Cryosphere, 11,
2175–2188,
https://doi.org/10.5194/tc-11-2175-2017, 2017.
a
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the Reliability of
Magnesium in Foraminiferal Calcite as a Proxy for Water Mass Temperatures,
Geochim. Cosmochim. Ac., 60, 803–814,
https://doi.org/10.1016/0016-7037(95)00446-7, 1996.
a,
b
Prahl, F. G. and Wakeham, S. G.: Calibration of Unsaturation Patterns in
Long-Chain Ketone Compositions for Palaeotemperature Assessment, Nature, 330,
367,
https://doi.org/10.1038/330367a0, 1987.
a
R Core Team: R: A Language and Environment for Statistical
Computing, Vienna, Austria, 2017. a
Roche, D. M., Waelbroeck, C., Metcalfe, B., and Caley, T.: FAME (v1.0): a
simple module to simulate the effect of planktonic foraminifer
species-specific habitat on their oxygen isotopic content, Geosci. Model
Dev., 11, 3587–3603,
https://doi.org/10.5194/gmd-11-3587-2018, 2018.
a,
b,
c
Rosell-Melé, A., Bard, E., Emeis, K.-C., Grimalt, J. O., Müller, P.,
Schneider, R., Bouloubassi, I., Epstein, B., Fahl, K., Fluegge, A., Freeman,
K., Goñi, M., Güntner, U., Hartz, D., Hellebust, S., Herbert, T.,
Ikehara, M., Ishiwatari, R., Kawamura, K., Kenig, F., de Leeuw, J., Lehman,
S., Mejanelle, L., Ohkouchi, N., Pancost, R. D., Pelejero, C., Prahl, F.,
Quinn, J., Rontani, J.-F., Rostek, F., Rullkotter, J., Sachs, J., Blanz, T.,
Sawada, K., Schulz-Bull, D., Sikes, E., Sonzogni, C., Ternois, Y.,
Versteegh, G., Volkman, J., and Wakeham, S.: Precision of the Current Methods
to Measure the Alkenone Proxy U
K′37 and Absolute Alkenone Abundance in
Sediments: Results of an Interlaboratory Comparison Study, Geochem.
Geophy. Geosy., 2, 2000GC0,
https://doi.org/10.1029/2000GC000141, 2001.
a
Rosenthal, Y. and Lohmann, G. P.: Accurate Estimation of Sea Surface
Temperatures Using Dissolution-Corrected Calibrations for
Mg∕Ca
Paleothermometry, Paleoceanography, 17, 1044,
https://doi.org/10.1029/2001PA000749,
2002.
a,
b
Rosenthal, Y., Oppo, D. W., and Linsley, B. K.: The Amplitude and Phasing of
Climate Change during the Last Deglaciation in the Sulu Sea, Western
Equatorial Pacific, Geophys. Res. Lett., 30, 1428,
https://doi.org/10.1029/2002GL016612, 2003.
a,
b,
c,
d
Sadekov, A., Eggins, S. M., De Deckker, P., and Kroon, D.: Uncertainties in
Seawater Thermometry Deriving from Intratest and Intertest
Mg∕Ca
Variability in Globigerinoides Ruber: Uncertainties
Mg∕Ca Seawater Thermometry, Paleoceanography, 23, 1–12,
https://doi.org/10.1029/2007PA001452, 2008.
a,
b,
c
Sadler, P. M.: The Influence of Hiatuses on Sediment Accumulation Rates,
GeoResearch Forum, 5, 15–40, 1999. a
Schiffelbein, P. and Hills, S.: Direct Assessment of Stable Isotope Variability
in Planktonic Foraminifera Populations, Palaeogeogr. Palaeocl., 48, 197–213,
https://doi.org/10.1016/0031-0182(84)90044-0, 1984.
a,
b,
c,
d
Schneider, B., Leduc, G., and Park, W.: Disentangling Seasonal Signals in
Holocene Climate Trends by Satellite-Model-Proxy Integration,
Paleoceanography, 25, PA4217,
https://doi.org/10.1029/2009PA001893, 2010.
a,
b
Scussolini, P. and Peeters, F. J. C.: A Record of the Last 460 Thousand Years
of Upper Ocean Stratification from the Central Walvis Ridge, South
Atlantic, Paleoceanography, 28, 426–439,
https://doi.org/10.1002/palo.20041, 2013.
a
Scussolini, P., van Sebille, E., and Durgadoo, J. V.: Paleo Agulhas Rings
Enter the Subtropical Gyre during the Penultimate Deglaciation, Clim. Past, 9, 2631–2639,
https://doi.org/10.5194/cp-9-2631-2013, 2013.
a,
b,
c,
d
Scussolini, P., Marino, G., Brummer, G.-J. A., and Peeters, F. J. C.: Saline
Indian Ocean Waters Invaded the South Atlantic Thermocline during
Glacial Termination II, Geology, 43, 139–142,
https://doi.org/10.1130/G36238.1,
2015.
a
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global Warming Preceded by
Increasing Carbon Dioxide Concentrations during the Last Deglaciation,
Nature, 484, 49–54,
https://doi.org/10.1038/nature10915, 2012.
a
Skinner, L. C. and Elderfield, H.: Constraining Ecological and Biological Bias
in Planktonic Foraminiferal
Mg∕Ca and
δ18Occ: A
Multispecies Approach to Proxy Calibration Testing, Paleoceanography, 20,
PA1015,
https://doi.org/10.1029/2004PA001058, 2005.
a
Smerdon, J. E., Kaplan, A., Zorita, E., González-Rouco, J. F., and Evans,
M. N.: Spatial Performance of Four Climate Field Reconstruction Methods
Targeting the Common Era, Geophys. Res. Lett., 38, L11705,
https://doi.org/10.1029/2011GL047372, 2011.
a
Smith, J., Quinn, T., Helmle, K., and Halley, R.: Reproducibility of
Geochemical and Climatic Signals in the Atlantic Coral Montastraea
Faveolata, Paleoceanography, 21, 1–18, 2006. a
Steiner, Z., Lazar, B., Levi, S., Tsroya, S., Pelled, O., Bookman, R., and
Erez, J.: The Effect of Bioturbation in Pelagic Sediments: Lessons from
Radioactive Tracers and Planktonic Foraminifera in the Gulf of Aqaba,
Red Sea, Geochim. Cosmochim. Ac., 194, 139–152,
https://doi.org/10.1016/j.gca.2016.08.037, 2016.
a
Teal, L., Bulling, M., Parker, E., and Solan, M.: Global Patterns of
Bioturbation Intensity and Mixed Depth of Marine Soft Sediments, Aquat.
Biol., 2, 207–218,
https://doi.org/10.3354/ab00052, 2010.
a
Thirumalai, K., Partin, J. W., Jackson, C. S., and Quinn, T. M.: Statistical
Constraints on El Niño Southern Oscillation Reconstructions Using
Individual Foraminifera: A Sensitivity Analysis, Paleoceanography, 28,
401–412,
https://doi.org/10.1002/palo.20037, 2013.
a,
b
Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing
Climate Anomalies in Space and Time. Part I: Development
and Applications to Paleoclimate Reconstruction Problems, J.
Clim., 23, 2759–2781,
https://doi.org/10.1175/2009JCLI3015.1, 2009.
a
Trauth, M. H., Sarnthein, M., and Arnold, M.: Bioturbational Mixing Depth and
Carbon Flux at the Seafloor, Paleoceanography, 12, 517–526,
https://doi.org/10.1029/97PA00722, 1997.
a,
b
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton
Class-Specific Primary Production in the World's Oceans: Seasonal and
Interannual Variability from Satellite Observations, Global Biogeochem.
Cy., 24, 1–19,
https://doi.org/10.1029/2009GB003680, 2010.
a
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C.,
Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.: Ocean
Currents Generate Large Footprints
in Marine Palaeoclimate Proxies, Nat.
Commun., 6, 6521,
https://doi.org/10.1038/ncomms7521, 2015.
a
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Nemec, N., Ruff,
M., Suter, M., Synal, H.-A., and Vockenhuber, C.: MICADAS: Routine
and High-Precision Radiocarbon Dating, Radiocarbon, 52, 252–262,
2010. a
Weldeab, S., Schneider, R. R., and Müller, P.: Comparison of Mg/Ca-
and Alkenone-Based Sea Surface Temperature Estimates in the Fresh
Water-Influenced Gulf of Guinea, Eastern Equatorial
Atlantic, Geochem. Geophy. Geosy., 8, Q05P22,
https://doi.org/10.1029/2006GC001360, 2007.
a
Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis,
Springer-Verlag New York, 2009. a
Wit, J. C., Reichart, G.-J., A Jung, S. J., and Kroon, D.: Approaches to
Unravel Seasonality in Sea Surface Temperatures Using Paired Single-Specimen
Foraminiferal
δ18O and
Mg∕Ca Analyses, Paleoceanography,
25, PA4220,
https://doi.org/10.1029/2009PA001857, 2010.
a
Wörmer, L., Elvert, M., Fuchser, J., Lipp, J. S., Buttigieg, P. L., Zabel,
M., and Hinrichs, K.-U.: Ultra-High-Resolution Paleoenvironmental Records via
Direct Laser-Based Analysis of Lipid Biomarkers in Sediment Core Samples,
P. Natl. Acad. Sci. USA, 111, 15669–15674,
https://doi.org/10.1073/pnas.1405237111, 2014.
a
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to
Present, Science, 292, 686–693,
https://doi.org/10.1126/science.1059412, 2001.
a
Zonneveld, K. A., Bockelmann, F., and Holzwarth, U.: Selective Preservation of
Organic-Walled Dinoflagellate Cysts as a Tool to Quantify Past Net Primary
Production and Bottom Water Oxygen Concentrations, Mar. Geol., 237,
109–126,
https://doi.org/10.1016/j.margeo.2006.10.023, 2007.
a