Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Clim. Past, 14, 811-824, 2018
https://doi.org/10.5194/cp-14-811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
18 Jun 2018
Assessing the impact of large volcanic eruptions of the last millennium (850–1850 CE) on Australian rainfall regimes
Stephanie A. P. Blake1,2, Sophie C. Lewis2,3, Allegra N. LeGrande4, and Ron L. Miller4 1Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
2ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW, Australia
3Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
4NASA Goddard Institute for Space Studies and Center for Climate Systems Research, Columbia University, New York City, USA
Abstract. Explosive volcanism is an important natural climate forcing, impacting global surface temperatures and regional precipitation. Although previous studies have investigated aspects of the impact of tropical volcanism on various ocean–atmosphere systems and regional climate regimes, volcanic eruptions remain a poorly understood climate forcing and climatic responses are not well constrained. In this study, volcanic eruptions are explored in particular reference to Australian precipitation, and both the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO). Using nine realisations of the last millennium (LM) (850–1850 CE) with different time-evolving forcing combinations, from the NASA GISS ModelE2-R, the impact of the six largest tropical volcanic eruptions of this period are investigated. Overall, we find that volcanic aerosol forcing increased the likelihood of El Niño and positive IOD conditions for up to four years following an eruption, and resulted in positive precipitation anomalies over north-west (NW) and south-east (SE) Australia. Larger atmospheric sulfate loading during larger volcanic eruptions coincided with more persistent positive IOD and El Niño conditions, enhanced positive precipitation anomalies over NW Australia, and dampened precipitation anomalies over SE Australia.
Citation: Blake, S. A. P., Lewis, S. C., LeGrande, A. N., and Miller, R. L.: Assessing the impact of large volcanic eruptions of the last millennium (850–1850 CE) on Australian rainfall regimes, Clim. Past, 14, 811-824, https://doi.org/10.5194/cp-14-811-2018, 2018.
Publications Copernicus
Download
Short summary
We studied the impact of the six largest tropical eruptions in reference to Australian precipitation, the Indian Ocean Dipole (IOD), and El Niño–Southern Oscillation (ENSO). Volcanic forcing increased the likelihood of El Niños and positive IODs (pIOD) and caused positive rainfall anomalies over north-west (NW) and south-east (SE) Australia. Larger sulfate loading caused more persistent pIOD and El Niños, enhanced precipitation over NW Australia, and dampened precipitation over SE Australia.
We studied the impact of the six largest tropical eruptions in reference to Australian...
Share