Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 14, issue 6
Clim. Past, 14, 947-967, 2018
https://doi.org/10.5194/cp-14-947-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Clim. Past, 14, 947-967, 2018
https://doi.org/10.5194/cp-14-947-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jun 2018

Research article | 29 Jun 2018

Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory

Tine Nilsen et al.
Related authors  
Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527-557, https://doi.org/10.5194/cp-14-527-2018,https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Are there multiple scaling regimes in Holocene temperature records?
Tine Nilsen, Kristoffer Rypdal, and Hege-Beate Fredriksen
Earth Syst. Dynam., 7, 419-439, https://doi.org/10.5194/esd-7-419-2016,https://doi.org/10.5194/esd-7-419-2016, 2016
Short summary
Long-range memory in internal and forced dynamics of millennium-long climate model simulations
L. Østvand, T. Nilsen, K. Rypdal, D. Divine, and M. Rypdal
Earth Syst. Dynam., 5, 295-308, https://doi.org/10.5194/esd-5-295-2014,https://doi.org/10.5194/esd-5-295-2014, 2014
Related subject area  
Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Centennial-Decadal
The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733-1749, https://doi.org/10.5194/cp-11-1733-2015,https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary
Cited articles  
Beran, J., Feng, Y., Ghosh, S., and Kulik, R.: Long-Memory Processes, Springer, New York, 884 pp., 2013.
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W., Zetterberg, P., and Eronen, M.: Fennoscandian summers from ad 500: temperature changes on short and long timescales, Clim. Dynam., 7, 111–119, https://doi.org/10.1007/BF00211153, 1992.
Briffa, K. R., Osborn, T., Schweingruber, F. H., Harris, I. C., Jones, P. D., Shiyatov, S. G., and Vaganov, E.: Low frequency temperature variations from a northern tree ring density network, J. Geophys. Res.-Atmos., 106, 2929–2941, https://doi.org/10.1029/2000JD900617, 2001.
Christiansen, B.: Reconstructing the NH Mean Temperature: Can Underestimation of Trends and Variability Be Avoided?, J. Climate, 24, 674–692, https://doi.org/10.1175/2010JCLI3646.1, 2011.
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia, Rev. Geophys., 55, 40–96, https://doi.org/10.1002/2016RG000521, 2017.
Publications Copernicus
Download
Short summary
The BARCAST climate field reconstruction method is tested using synthetic data experiments. It is demonstrated that the output reconstructions have altered statistical properties compared with the input data, but they are also not necessarily consistent with the model assumption of the reconstruction method. The conclusion is that the statistical properties of a reconstruction not only reflect the statistics of the real climate, but they may very well be affected by the manipulation of the data.
The BARCAST climate field reconstruction method is tested using synthetic data experiments. It...
Citation
Share