Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year 3.841
  • CiteScore value: 3.48 CiteScore 3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H index value: 58 Scimago H index 58
Volume 14, issue 7 | Copyright
Clim. Past, 14, 969-990, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jul 2018

Research article | 04 Jul 2018

Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly

James U. L. Baldini, Richard J. Brown, and Natasha Mawdsley James U. L. Baldini et al.
  • Department of Earth Sciences, University of Durham, Durham, DH1 3LE, UK

Abstract. The Younger Dryas is considered the archetypal millennial-scale climate change event, and identifying its cause is fundamental for thoroughly understanding climate systematics during deglaciations. However, the mechanisms responsible for its initiation remain elusive, and both of the most researched triggers (a meltwater pulse or a bolide impact) are controversial. Here, we consider the problem from a different perspective and explore a hypothesis that Younger Dryas climate shifts were catalysed by the unusually sulfur-rich 12.880±0.040kaBP eruption of the Laacher See volcano (Germany). We use the most recent chronology for the GISP2 ice core ion dataset from the Greenland ice sheet to identify a large volcanic sulfur spike coincident with both the Laacher See eruption and the onset of Younger Dryas-related cooling in Greenland (i.e. the most recent abrupt Greenland millennial-scale cooling event, the Greenland Stadial 1, GS-1). Previously published lake sediment and stalagmite records confirm that the eruption's timing was indistinguishable from the onset of cooling across the North Atlantic but that it preceded westerly wind repositioning over central Europe by  ∼ 200 years. We suggest that the initial short-lived volcanic sulfate aerosol cooling was amplified by ocean circulation shifts and/or sea ice expansion, gradually cooling the North Atlantic region and incrementally shifting the midlatitude westerlies to the south. The aerosol-related cooling probably only lasted 1–3 years, and the majority of Younger Dryas-related cooling may have been due to the sea-ice–ocean circulation positive feedback, which was particularly effective during the intermediate ice volume conditions characteristic of  ∼ 13kaBP. We conclude that the large and sulfur-rich Laacher See eruption should be considered a viable trigger for the Younger Dryas. However, future studies should prioritise climate modelling of high-latitude volcanism during deglacial boundary conditions in order to test the hypothesis proposed here.

Download & links
Publications Copernicus
Short summary
The Younger Dryas occurred ~13 ka BP and is an iconic millennial-scale climate anomaly. However, the cause of the event is still ambiguous. Here, we propose that the event was triggered by a large, sulfur-rich eruption of the Laacher See volcano (Germany). The eruption's direct (sulfate aerosol-induced) cooling effects lasted less than 5 years, and we suggest these were amplified and extended by a sea-ice–ocean circulation positive feedback, leading to the event's characteristic features.
The Younger Dryas occurred ~13 ka BP and is an iconic millennial-scale climate anomaly. However,...