
Clim. Past, 15, 1223–1249, 2019
https://doi.org/10.5194/cp-15-1223-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mid-Holocene climate change over China:
model–data discrepancy
Yating Lin1,2,4, Gilles Ramstein2, Haibin Wu1,3,4, Raj Rani2, Pascale Braconnot2, Masa Kageyama2, Qin Li1,3,
Yunli Luo5, Ran Zhang6, and Zhengtang Guo1,3,4

1Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics,
Chinese Academy of Sciences, Beijing 100029, China
2Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay,
Gif-sur-Yvette 91191, France
3CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
6Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Correspondence: Haibin Wu (haibin-wu@mail.iggcas.ac.cn)

Received: 26 October 2018 – Discussion started: 13 November 2018
Revised: 27 May 2019 – Accepted: 4 June 2019 – Published: 2 July 2019

Abstract. The mid-Holocene period (MH) has long been an
ideal target for the validation of general circulation model
(GCM) results against reconstructions gathered in global
datasets. These studies aim to test GCM sensitivity, mainly
to seasonal changes induced by the orbital parameters (lon-
gitude of the perihelion). Despite widespread agreement be-
tween model results and data on the MH climate, some im-
portant differences still exist. There is no consensus on the
continental size (the area of the temperature anomaly) of the
MH thermal climate response, which makes regional quan-
titative reconstruction critical to obtain a comprehensive un-
derstanding of the MH climate patterns. Here, we compare
the annual and seasonal outputs from the most recent Paleo-
climate Modelling Intercomparison Project Phase 3 (PMIP3)
models with an updated synthesis of climate reconstruction
over China, including, for the first time, a seasonal cycle of
temperature and precipitation. Our results indicate that the
main discrepancies between model and data for the MH cli-
mate are the annual and winter mean temperature. A warmer-
than-present climate condition is derived from pollen data
for both annual mean temperature (∼ 0.7 K on average) and
winter mean temperature (∼ 1 K on average), while most of
the models provide both colder-than-present annual and win-
ter mean temperature and a relatively warmer summer, show-
ing a linear response driven by the seasonal forcing. By con-

ducting simulations in BIOME4 and CESM, we show that
surface processes are the key factors creating the uncertain-
ties between models and data. These results pinpoint the cru-
cial importance of including the non-linear responses of the
surface water and energy balance to vegetation changes.

1 Introduction

Much attention from paleoclimate studies has been focused
on the current interglacial (the Holocene), especially the mid-
Holocene (MH; 6± 0.5 ka). The major difference in the ex-
perimental configuration between the MH and pre-industrial
(PI) arises from the orbital parameters, which brings about
an increase in the amplitude of the seasonal cycle of insola-
tion in the Northern Hemisphere and a decrease in the South-
ern Hemisphere (Berger, 1978). Thus, the MH provides an
excellent case study on which to base an evaluation of the
climate response to changes in the distribution of insolation.
Great efforts have been devoted by the modelling community
to designing MH common experiments using similar bound-
ary conditions (Joussaume and Taylor, 1995; Harrison et al.,
2002; Braconnot et al., 2007a, b). In addition, much work has
been done to reconstruct the paleoclimate change based on
different proxies at the global and continental scale (Guiot et
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al., 1993; Kohfeld and Harrison, 2000; Prentice et al., 2000;
Bartlein et al., 2011). The greatest progress in understand-
ing MH climate change and variability has consistently been
made by comparing large-scale analyses of data with simu-
lations from global climate models (Joussaume et al., 1999;
Liu et al., 2004; Harrison et al., 2014).

However, the source of discrepancies between model re-
sults and data is still an open and stimulating question.
Two types of inconsistencies have been identified: (1) the
model and data showing opposite signs; for instance, pale-
oclimate evidence from data records indicates an increase
of about 0.5 K in global annual mean temperature during
the MH compared with PI (Shakun et al.. 2012; Marcott
et al., 2013), while there is a cooling trend in model sim-
ulations (Liu et al., 2014). (2) The same trend being dis-
played by both model and data but with different magni-
tudes. Previous studies have shown that while climate mod-
els can successfully reproduce the direction and large-scale
patterns of past climate changes, they tend to consistently
underestimate the magnitude of change in the monsoons of
the Northern Hemisphere as well as the amount of MH pre-
cipitation over northern Africa (Braconnot et al., 2012; Har-
rison et al., 2015). Moreover, significant spatial variability
has been noted in both observations and simulations (Pey-
ron et al., 2000; Davis et al., 2003; Braconnot et al., 2007a;
Wu et al., 2007; Bartlein et al., 2011). For instance, Mar-
cott et al. (2013) reconstructed a cooling trend of global tem-
perature during the Holocene, mainly from marine records
(∼ 80 %). Based on 642 sub-fossil pollen data points, Mar-
sicek et al. (2018) show that long-term warming defined the
Holocene until around 2000 years ago for the European and
North American continents. The different trends of pollen-
and marine-based reconstructions indicate the spatial vari-
ability of annual temperature change during the MH over
the globe, which has already been investigated by Bartlein et
al. (2010). That makes regional quantitative reconstruction
(Davis et al., 2003; Mauri et al., 2015) essential to obtain
a comprehensive understanding of the MH climate patterns
and to act as a benchmark to evaluate climate models (Fis-
cher and Jungclaus, 2011; Harrison et al., 2014).

China offers two advantages with respect to these issues.
The sheer expanse of the country means that the continen-
tal response to insolation changes over a large region can
be investigated. Moreover, the quantitative reconstruction of
seasonal climate changes during the MH, based on the new
pollen dataset, provides a unique opportunity to compare the
seasonal cycles for models and data. Previous studies in-
dicate that warmer- and wetter-than-present conditions pre-
vailed over China during the MH and that the magnitude of
the annual temperature increases varied from 2.4 to 5.8 K
spatially, with an annual precipitation increase in the range
of 34–267 mm (e.g. Sun et al., 1996; Jiang et al., 2010; Lu et
al., 2012; Chen et al., 2015). However, Jiang et al. (2012)
clearly show a mismatch between multi-proxy reconstruc-
tions and model simulations. In terms of climate anomalies

(MH–PI), besides the∼ 1 K increase in summer temperature,
35 out of 36 Paleoclimate Modelling Intercomparison Project
(PMIP) models reproduce annual (∼ 0.4 K) and winter tem-
peratures (∼ 1.4 K) that are colder than the baseline, and a
drier-than-baseline climate in some western and middle re-
gions over China is depicted in models (Jiang et al., 2013).
Jiang et al. (2012) point out the model–data discrepancy over
China during the MH, but the lack of seasonal reconstruc-
tions in their study limits comparisons with simulations.

An important issue raised by Liu et al. (2014) is that the
discrepancy at the annual level could be due to incorrect re-
constructions of the seasonal cycle, a key objective in our
paper. Moreover, it has been suggested that the vegetation
change can strengthen the temperature response at high lati-
tudes (O’Ishi et al., 2009; Otto et al., 2009), as well as alter
the hydrological conditions in the tropics (Z. Liu et al., 2007).
However, compared to the substantial land cover changes in
the MH derived from pollen datasets (Ni et al., 2010; Yu et
al., 2000), the changes in vegetation have not yet been fully
quantified and discussed in PMIP3 (Taylor et al., 2012).

In this study, we first present new reconstructions. We
use a quantitative biomization method to reconstruct veg-
etation types during the MH based on a new synthesis of
pollen datasets and then use an inverse vegetation model
(Guiot et al., 2000; Wu et al., 2007) to obtain the mean
annual temperature, the mean temperature of the warmest
month (MTWA), the mean temperature of the coldest month
(MTCO), the mean annual precipitation, July precipitation
and January precipitation over China for the MH. Fur-
thermore, we present a comprehensive evaluation of the
PMIP3 simulations performed with state-of-art climate mod-
els based on our reconstructions of temperature and precip-
itation. This is the first time that such progress towards a
quantitative seasonal climate comparison for the MH over
China has been made. This point is crucial because the MH
PMIP3 experiment is essentially one that looks at the re-
sponse of the models to changes in the seasonality of in-
solation, and the attempt to derive reconstructions of both
summer and winter climate to compare with the simulations
will thus enable us to answer the question posed by Liu et
al. (2014) on the importance of seasonal reconstructions.

2 Data and methodology

2.1 Data

In this study, we collected 159 pollen records covering most
of China for the MH period (6000± 500 14C yr BP) (Fig. 1).
Notably, according to IntCal13 (Reimer et al., 2013), the
MH time slice of 6000± 500 14C yr BP is about 6800 cal BP
(the average value), which is not totally consistent with
the “mid-Holocene” used in the CMIP5–PMIP3 experiment
(6000 cal BP). But for a better comparison with BIOME6000
(in which the MH is defined as 6000± 500 14C yr BP), we
decided to choose the pollen data at 6000± 500 14C yr BP
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Figure 1. Distribution of pollen sites during the mid-Holocene pe-
riod in China. The black circle is the original China Quaternary
Pollen Database, red circles are digitized ones from published pa-
pers and green circles represent the three original pollen data points
used in this study. The area in green represents the Tibetan Plateau,
and yellow represents the Loess Plateau.

in our study. In the 159 records, 65 were from the China
Quaternary Pollen Database (CQPD, 2000), 3 were origi-
nal datasets obtained for our study and the others were dig-
itized from pollen diagrams in published papers with a re-
calculation of pollen percentages based on the total number
of terrestrial pollen types. These digitized 91 pollen records
were selected according to three criteria: (1) clearly readable
pollen diagrams with a reliable chronology and a minimum
of three independent age control points since the Last Glacial
Maximum (LGM); (2) including the pollen taxa during the
6000± 500 14C yr BP period with a minimum sampling res-
olution of 1000 years per sample; and (3) abandoning the
pollen records if the published paper mentions the influence
of human activity. For the age control, different dating meth-
ods are utilized in the collected pollen records, and we ap-
plied CalPal 2007 (Weninger et al., 2007) to correct 14C age
into calendar age so that they can be contrasted with each
other. For lacustrine records, if the specific carbon pool age
is mentioned in the literature, the calendar age is corrected
after deducting the carbon pool. Otherwise, the influence
of the carbon pool is not considered. The age–depth model
for the pollen records was estimated by linear interpolation
between adjacent available dates or by regression. Using
ranking schemes from the Cooperative Holocene Mapping
Project, the quality of dating control for the mid-Holocene
was assessed by assigning a rank from 1 to 7; 70 % of the
records used in our study fell into the first and second classes
(see Table 1 for detailed information) according to the Webb
1–7 standards (Webb III, 1985). Vegetation type was quan-
titatively reconstructed using biomization (Prentice et al.,
1996), following the classification of plant functional types
(PFTs) and biome assignment in China by the Members of

the China Quaternary Pollen Database (CQPD, 2000), which
has been widely tested in surface sediment. The new sites
(91 digitized data points and 3 original data points) added to
our database improved the spatial coverage of pollen records,
especially in the northwest, the Tibetan Plateau, the Loess
Plateau and southern regions, where the data in the previous
databases are very limited.

Modern monthly mean climate variables investigated in
this study, including temperature, precipitation and cloudi-
ness (total cloud fraction), have been collected for each mod-
ern pollen site based on the datasets (1951–2001) from 657
meteorological observation stations over China (China Cli-
mate Bureau, China Ground Meteorological Record Monthly
Report, 1951–2001). The MH soil properties and characteris-
tics used in the inverse vegetation model were kept the same
with PI conditions, which are derived from the digital world
soil map produced by the Food and Agricultural Organiza-
tion (FAO, 1995). The atmospheric CO2 concentration for
the MH was taken from ice core records (EPICA community
members, 2004) and was set at 270 ppmv.

A three-layer back-propagation (BP) artificial neural net-
work (ANN) technique was used for interpolation on each
pollen site (Caudill and Butler, 1992). Five input variables
(latitude, longitude, elevation, annual precipitation, annual
temperature) and one output variable (biome scores) have
been chosen in ANN for modern vegetation. The ANN has
been calibrated on the training set, and its performance has
been evaluated on the verification set (20 %, randomly ex-
tracted from the total sets). After a series of training runs,
the lowest verification error is obtained with five neurons
in the hidden layer after 10 000 iterations. In our study, at
each pollen site, we first applied the biomization method
to get the biome scores for both the present day and the
MH. The anomalies between past (6 ka) and modern vege-
tation indices (biome scores) were then interpolated to the
0.2× 0.2◦ grid resolution by applying the ANN. After that,
the modern grid values were added to the values of the grid
of paleo-anomalies to provide gridded paleo-biome indices.
Finally, the biome with the highest index was attributed to
each grid point. This ANN method is more efficient than
many other techniques on the condition that the results are
validated by independent datasets, and therefore it has been
widely applied in paleoclimatology (Guiot et al., 1996; Pey-
ron et al., 1998). The schematic diagram of ANN (Fig. S1)
can be found in the Supplement.

2.2 Climate models

PMIP, a long-standing initiative, is a climate model evalua-
tion project which provides an efficient mechanism for using
global climate models to simulate climate anomalies for past
periods and to understand the role of climate feedbacks. In
its third phase (PMIP3; Braconnot et al., 2011), the models
were identical to those used in the Climate Modelling
Intercomparison Project Phase 5 (CMIP5) experiments. The
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Table 1. Basic information on the pollen dataset used in this study.

Site Lat. Lon. Alt. Webb 1–7 Source

Sujiawan 35.54 104.52 1700 2 Original data (Zou et al., 2009)
Xiaogou 36.10 104.90 1750 2 Original data (Wu et al., 2009)
Dadiwan 35.01 105.91 1400 1 Original data (Zou et al., 2009)
Sanjiaocheng 39.01 103.34 1320 1 Chen et al. (2006)
Chadianpo 36.10 114.40 65 2 Z. Zhang et al. (2007)
Qindeli 48.08 133.25 60 2 Yang and Wang (2003)
Fuyuanchuangye 47.35 133.03 56 3 Xia (1988)
Jingbo Lake 43.83 128.50 350 2 C. Li et al. (2011)
Hani Lake 42.22 126.52 900 1 Cui et al. (2006)
Jinchuan 42.37 126.43 662 5 Jiang et al. (2008)
Maar Lake 42.30 126.37 724 1 Liu et al. (2009)
Maar Lake 42.30 126.37 724 1 Liu et al. (2008)
Xie Lake SO4 37.38 122.52 0 1 Zhou et al. (2008)
Nanhuiheming core 31.05 121.58 7 2 Jia and Zhang (2006)
Toushe 23.82 120.88 650 1 Liu et al. (2006)
Dongyuan Lake 22.17 120.83 415 2 Lee et al. (2010)
Yonglong CY 31.78 120.44 5 3 Zhang et al. (2004)
Hangzhou HZ3 30.30 120.33 6 4 J. Liu et al. (2007)
Xinhua XH1 32.93 119.83 2 3 Shu et al. (2008)
ZK01 31.77 119.80 6 2 Shu et al. (2007)
Chifeng 43.97 119.37 503 2 Xu et al. (2002)
SZK1 26.08 119.31 9 1 Zheng et al. (2002)
Gucheng 31.28 118.90 6 4 Yang et al. (1996)
Lulong 39.87 118.87 23 2 Kong et al. (2000)
Hulun Lake 48.92 117.42 545 1 Wen et al. (2010)
CH-1 31.56 117.39 5 2 Wang et al. (2008)
Sanyi profile 43.62 117.38 1598 4 Wang et al. (2005)
Xiaoniuchang 42.62 116.82 1411 1 Liu et al. (2002)
Haoluku 42.87 116.76 1333 2 Liu et al. (2002)
Liuzhouwan 42.71 116.68 1410 7 Liu et al. (2002)
Poyang Lake 103B 28.87 116.25 16 4 Jiang and Piperno (1999)
Baiyangdian 38.92 115.84 8 2 Xu et al. (1988)
Bayanchagan 42.08 115.35 1355 1 Jiang et al. (2006)
Huangjiapu 40.57 115.15 614 7 Sun et al. (2001)
Dingnan 24.68 115.00 250 2 Xiao et al. (2007)
Guang1 36.02 114.53 56 1 Z. Zhang et al. (2007)
Angulinao 41.33 114.35 1315 1 H. Wang et al. (2010)
Yangyuanxipu 40.12 114.22 921 6 Wang et al. (2003)
Shenzhen Sx07 22.75 113.78 2 2 Zhang and Yu (1999)
GZ-2 22.71 113.51 1 7 X. Wang et al. (2010)
Daihai99a 40.55 112.66 1221 2 Xiao et al. (2004)
Daihai 40.55 112.66 1221 2 Sun et al. (2006)
Sihenan profile 34.80 112.40 251 1 Sun and Xia (2005)
Diaojiaohaizi 41.30 112.35 2015 1 Yang et al. (2001)
Ganhaizi 39.00 112.30 1854 3 Meng et al. (2007)
Jiangling profile 30.35 112.18 37 1 Xie et al. (2006)
Helingeer 40.38 111.82 1162 3 X. Li et al. (2011)
Shennongjia2 31.75 110.67 1700 1 Liu et al. (2001)
Huguangyan Maar Lake 21.15 110.28 59 2 Wang et al. (2007)
Yaoxian 35.93 110.17 1556 2 Li et al. (2003a)
Jixian 36.00 110.06 1005 6 Xia et al. (2002)
Shennongjia Dajiu Lake 31.49 110.00 1760 2 Zhu et al. (2006)
Qigai Nuur 39.50 109.85 1300 1 Sun and Feng (2013)
Beizhuangcun 34.35 109.53 519 1 Xue et al. (2010)
Lantian 34.15 109.33 523 1 Li and Sun (2005)
Bahanniao 39.32 109.27 1278 1 Guo et al. (2007)
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Table 1. Continued.

Site Lat. Lon. Alt. Webb 1–7 Source

Midiwan 37.65 108.62 1400 1 Li et al. (2003b)
Jinbian 37.50 108.33 1688 2 Cheng (2011)
Xindian 34.38 107.80 608 1 Xue et al. (2010)
Nanguanzhuang 34.43 107.75 702 1 Zhao et al. (2003)
Xifeng 35.65 107.68 1400 3 Xu (2006)
Jiyuan 37.13 107.40 1765 3 X. Li et al. (2011)
Jiacunyuan 34.27 106.97 1497 2 Gong (2006)
Dadiwan 35.01 105.91 1400 1 Zou et al. (2009)
Maying 35.34 104.99 1800 1 Tang and An (2007)
Huiningxiaogou 36.10 104.90 1750 2 Wu et al. (2009)
Sujiawan 35.54 104.52 1700 2 Zou et al. (2009)
QTH02 39.07 103.61 1302 1 Yu et al. (2009)
Laotanfang 26.10 103.20 3579 2 W. Zhang et al. (2007)
Hongshui River2 38.17 102.76 1511 1 Ma et al. (2003)
Ruoergai 33.77 102.55 3480 1 Cai (2008)
Hongyuan 32.78 102.52 3500 2 Wang et al. (2006)
Dahaizi 27.50 102.33 3660 1 Li et al. (1988)
Shayema Lake 28.58 102.22 2453 1 Tang and Shen (1996)
Luanhaizi 37.59 101.35 3200 5 Herzschuh et al. (2006)
Lugu Lake 27.68 100.80 2692 1 Zheng et al. (2014)
Qinghai Lake 36.93 100.73 3200 2 Shen et al. (2004)
Dalianhai 36.25 100.41 2850 3 Cheng et al. (2010)
Erhai ES core 25.78 100.19 1974 1 Shen et al. (2006)
Xianmachi profile 25.97 99.87 3820 7 Yang et al. (2004)
TCK1 26.63 99.72 3898 1 Xiao et al. (2014)
Yidun Lake 30.30 99.55 4470 4 Shen et al. (2006)
Kuhai Lake 35.30 99.20 4150 1 Wischnewski et al. (2011)
Koucha Lake 34.00 97.20 4540 2 Herzschuh et al. (2009)
Hurleg 37.28 96.90 2817 2 Zhao et al. (2007)
Basu 30.72 96.67 4450 3 Tang et al. (1998)
Tuolekule 43.34 94.21 1890 1 An et al. (2011)
Balikun 43.62 92.77 1575 1 Tao et al. (2010)
Cuona 31.47 91.51 4515 3 Tang et al. (2009)
Dongdaohaizi2 44.64 87.58 402 1 Li et al. (2001)
Bositeng Lake 41.96 87.21 1050 1 Xu (1998)
Cuoqin 31.00 85.00 4648 4 Luo (2008)
Yili 43.86 81.97 928 2 X. Li et al. (2011)
Bangong Lake 33.75 78.67 4241 1 Huang et al. (1996)
Shengli 47.53 133.87 52 2 CQPD (2000)
Qingdeli 48.05 133.17 52 1 CQPD (2000)
Changbaishan 42.22 126.00 500 2 CQPD (2000)
Liuhe 42.90 125.75 910 7 CQPD (2000)
Shuangyang 43.27 125.75 215 1 CQPD (2000)
Xiaonan 43.33 125.33 209 1 CQPD (2000)
Tailai 46.40 123.43 146 5 CQPD (2000)
Sheli 45.23 123.31 150 4 CQPD (2000)
Tongtu 45.23 123.30 150 7 CQPD (2000)
Yueyawan 37.98 120.71 5 1 CQPD (2000)
Beiwangxu 37.75 120.61 6 1 CQPD (2000)
East Tai Lake1 31.30 120.60 3 1 CQPD (2000)
Suzhou 31.30 120.60 2 7 CQPD (2000)
Sun Moon Lake 23.51 120.54 726 2 CQPD (2000)
West Tai Lake 31.30 119.80 1 1 CQPD (2000)
Changzhou 31.43 119.41 5 1 CQPD (2000)
Dazeyin 39.50 119.17 50 7 CQPD (2000)
Hailaer 49.17 119.00 760 2 CQPD (2000)
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Table 1. Continued.

Site Lat. Lon. Alt. Webb 1–7 Source

Cangumiao 39.97 118.60 70 1 CQPD (2000)
Qianhuzhuang 40.00 118.58 80 6 CQPD (2000)
Reshuitang 43.75 117.65 1200 1 CQPD (2000)
Yangerzhuang 38.20 117.30 5 7 CQPD (2000)
Mengcun 38.00 117.06 7 5 CQPD (2000)
Hanjiang-CH2 23.48 116.80 5 2 CQPD (2000)
Hanjiang-SH6 23.42 116.68 3 7 CQPD (2000)
Hanjiang-SH5 23.45 116.67 8 2 CQPD (2000)
Hulun Lake 48.90 116.50 650 1 CQPD (2000)
Heitutang 40.38 113.74 1060 1 CQPD (2000)
Zhujiang delta PK16 22.73 113.72 15 7 CQPD (2000)
Angulitun 41.30 113.70 1400 7 CQPD (2000)
Bataigou 40.92 113.63 1357 1 CQPD (2000)
Dahewan 40.87 113.57 1298 2 CQPD (2000)
Yutubao 40.75 112.67 1254 7 CQPD (2000)
Zhujiang delta K5 22.78 112.63 12 1 CQPD (2000)
Da-7 40.52 112.62 1200 3 CQPD (2000)
Hahai-1 40.17 112.50 1200 5 CQPD (2000)
Wajianggou 40.50 112.50 1476 4 CQPD (2000)
Shuidong core A1 21.75 111.07 -8 2 CQPD (2000)
Dajahu 31.50 110.33 1700 2 CQPD (2000)
Tianshuigou 34.87 109.73 360 7 CQPD (2000)
Mengjiawan 38.60 109.67 1190 7 CQPD (2000)
Fuping BK13 34.70 109.25 422 7 CQPD (2000)
Yaocun 34.70 109.22 405 2 CQPD (2000)
Jinbian 37.80 108.60 1400 4 CQPD (2000)
Dishaogou 37.83 108.45 1200 2 CQPD (2000)
Shuidonggou 38.20 106.57 1200 5 CQPD (2000)
Jiuzhoutai 35.90 104.80 2136 7 CQPD (2000)
Luojishan 27.50 102.40 3800 1 CQPD (2000)
RM-F 33.08 102.35 3400 2 CQPD (2000)
Hongyuan 33.25 101.57 3492 1 CQPD (2000)
Wasong 33.20 101.52 3490 1 CQPD (2000)
Guhu core 28 27.67 100.83 2780 7 CQPD (2000)
Napahai core 34 27.80 99.60 3260 2 CQPD (2000)
Lop Nur 40.50 90.25 780 7 CQPD (2000)
Chaiwobao1 43.55 87.78 1100 2 CQPD (2000)
Chaiwobao2 43.33 87.47 1114 1 CQPD (2000)
Manasi 45.97 84.83 257 2 CQPD (2000)
Wuqia 43.20 83.50 1000 7 CQPD (2000)
Madagou 37.00 80.70 1370 2 CQPD (2000)
Tongyu 44.83 123.10 148 5 CQPD (2000)
Nanjing 32.15 119.05 10 2 CQPD (2000)
Banpo 34.27 109.03 395 1 CQPD (2000)
QL-1 34.00 107.58 2200 7 CQPD (2000)
Dalainu 43.20 116.60 1290 7 CQPD (2000)
Qinghai 36.55 99.60 3196 2 CQPD (2000)

experimental set-up for the mid-Holocene simulations in
PMIP3 followed the PMIP protocol (Taylor et al., 2012;
https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:design:6k:
final, last access: 20 June 2019). The main forcing difference
between the MH and PI in PMIP3 is the change in the orbital
configuration. More precisely, the orbital configuration in

the MH climate has an increased summer insolation and
a decreased winter insolation in the Northern Hemisphere
compared to the PI climate (Berger, 1978). In addition, the
CH4 concentration is prescribed at 650 ppbv in the MH,
while it is set at 760 ppbv in PI (Table 2).
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Table 2. Earth’s orbital parameters and trace gases as recommended by the PMIP3 project.

Simulation
Orbital parameters Trace gases

Longitude of CO2 CH4 N2O
Eccentricity Obliquity (◦) the perihelion (◦) (ppmv) (ppbv) (ppbv)

PI 0.016724 23.446 102.04 280 760 270
MH 0.018682 24.105 0.87 280 650 270

Table 3. PMIP3 model characteristics and references.

Model name Modelling centre Type Grid Reference

BCC-CSM-1-1 BCC-CMA (China) AOVGCM Atm: 128× 64×L26; ocean: 360× 232×L40 Xin et al. (2013)
CCSM4 NCAR (USA) AOGCM Atm: 288× 192×L26; ocean: 320× 384×L60 Gent et al. (2011)
CNRM-CM5 CNRM & CERFACS (France) AOGCM Atm: 256× 128×L31; ocean: 362× 292×L42 Voldoire et al. (2012)
CSIRO-Mk3-6-0 QCCCE, Australia AOGCM Atm: 192× 96×L18; ocean: 192× 192×L31 Jeffrey et al. (2013)
FGOALS-g2 LASG-IAP (China) AOVGCM Atm: 128× 60×L26; ocean: 360× 180×L30 Li et al. (2013)
FGOALS-s2 LASG-IAP (China) AOVGCM Atm: 128× 108×L26; ocean: 360× 180×L30 Bao et al. (2013)
GISS-E2-R GISS (USA) AOGCM Atm: 144× 90×L40; ocean: 288× 180×L32 Schmidt et al. (2014a, b)
HadGEM2-CC Hadley Centre (UK) AOVGCM Atm: 192× 145×L60; ocean: 360× 216×L40 Collins et al. (2011)
HadGEM2-ES Hadley Centre (UK) AOVGCM Atm: 192× 145×L38; ocean: 360× 216×L40 Collins et al. (2011)
IPSL-CM5A-LR IPSL (France) AOVGCM Atm: 96× 96×L39; ocean: 182× 149×L31 Dufresne et al. (2013)
MIROC-ESM Utokyo & NIES (Japan) AOVGCM Atm: 128× 64×L80; ocean: 256× 192×L44 Watanabe et al. (2011)
MPI-ESM-P MPI (Germany) AOGCM Atm: 196× 98×L47; ocean: 256× 220×L40 Giorgetta et al. (2013)
MRI-CGCM3 MRI (Japan) AOGCM Atm: 320× 160×L48; ocean: 364× 368×L51 Yukimoto et al. (2012)

All 13 models (Table 3) from PMIP3 with the MH sim-
ulation have been included in our study, including eight
atmosphere–ocean (AO) models and five atmosphere–ocean–
vegetation (AOV) models. Means for the last 30 years were
calculated from the archived time series data on individual
model grids for climate variables. Then the near-surface tem-
perature and precipitation flux were bi-linearly interpolated
to a uniform 2.5◦ grid in order to compute the bioclimatic
variables (e.g. MAT, MAP, MTWM, MTCO, July precipi-
tation) onto a common grid for comparison with the recon-
struction results.

2.3 Vegetation model

The vegetation model BIOME4 is a coupled bio-geography
and biogeochemistry model developed by Kaplan et
al. (2003). Monthly mean temperature, precipitation, sun-
shine percentage (an inverse measure of cloud area fraction),
absolute minimum temperature, atmospheric CO2 concen-
tration and subsidiary information about the soil’s physical
properties like water retention capacity and percolation rates
are the main input variables. It represents 13 plant functional
types (PFTs), which have different bioclimatic limits. The
PFTs are based on physiological attributes and bioclimatic
tolerance limits such as heat, moisture and chilling require-
ments as well as resistance of plants to cold. These limits
determine the areas where the PFTs can grow in a given
climate. A viable combination of these PFTs defines a par-
ticular biome among 28 potential options. These 28 biomes

can be further classified into eight megabiomes (Table S1).
BIOME4 has been widely utilized to analyse past, present
and potential future vegetation patterns (e.g. Bigelow et al.,
2003; Diffenbaugh et al., 2003; Song et al., 2005). In this
study, we conducted 13 PI and associated MH biome simula-
tions using PMIP3 climate fields (temperature, precipitation
and sunshine) as inputs. The climate fields, obtained from
PMIP3, are the monthly mean data of the last 30 model years.

2.4 Statistics and interpolation for vegetation distribution

To quantify the differences between simulated (based on
BIOME4 forced by the climate model output) and recon-
structed (from pollen) megabiomes, a map-based statistic
(point-to-point comparison with observations) called 1V

(Sykes et al., 1999; Ni et al., 2000) was applied to our study.
1V is based on the relative abundance of different plant life
forms (e.g. trees, grass, bare ground) and a series of attributes
(e. g. evergreen, needle-leaf, tropical, boreal) for each vege-
tation class. The definitions and attributes of each plant form
follow naturally from the BIOME4 structure, and the vege-
tation attribute values in the 1V computation were defined
for BIOME4 in the same way as for BIOME1 (Sykes et al.,
1999). The abundance and attribute values are given in Ta-
bles 4 and 5, which describe the typical floristic composition
of the biomes. Weighting the attributes is subjective because
there is no obvious theoretical basis for assigning relative sig-
nificance. Transitions between highly dissimilar megabiomes
have a weighting of close to 1, whereas transitions between
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Table 4. Important values for each plant life form used in the 1V statistical calculation as assigned to the megabiomes.

Life form

Megabiomes Trees Grass–shrub Bare ground

Tropical forest 1
Warm mixed forest 1
Temperate forest 1
Boreal forest 1
Grassland and dry shrubland 0.25 0.75
Savanna and dry woodland 0.5 0.5
Desert 0.25 0.75
Tundra 0.75 0.25

Table 5. Attribute values and the weights for plant life forms used by the 1V statistic.

Life form Attribute

Trees Evergreen Needle-leaf Tropical Boreal

Tropical forest 1 0 1 0
Warm mixed forest 0.75 0.25 0 0
Temperate forest 0.5 0.5 0 0.5
Boreal forest 0.25 0.75 0 1
Grassland and dry shrubland 0.75 0.25 0.75 0
Savanna and dry woodland 0.25 0.75 0 0.5
Weights 0.2 0.2 0.3 0.3

Grass–shrub Warm Arctic–alpine

Grassland and dry shrubland 1 0
Savanna and dry woodland 0.75 0
Desert 1 0
Tundra 0 1
Weights 0.5 0.5

Bare ground Arctic–alpine

Desert 0
Tundra 1
Weight 1

less dissimilar megabiomes are assigned smaller values. The
overall dissimilarity between model and data megabiome
maps was calculated by averaging 1V for the grids with
pollen data, while the value was set at 0 for any grid with-
out data. 1V values < 0.15 can be considered to point to
very good agreement between simulated and actual distribu-
tions; 0.15–0.30 is good, 0.30–0.45 is fair, 0.45–0.60 is poor
and > 0.80 is very poor (adjusted from Zhang et al., 2010).

2.5 Inverse vegetation model

The inverse vegetation model (Guiot et al., 2000; Wu et al.,
2007), highly dependent on the BIOME4 model, is applied
to our reconstruction. The key concept of this model can be
summarized in two points: firstly, a set of transfer functions
able to transform the model output into values directly com-

parable with pollen data is defined. There is no full com-
patibility between the biome typology of BIOME4 and the
biome typology of pollen data. A transfer matrix (Table S2)
was defined in our study whereby each BIOME4 vegetation
type is assigned a vector of values, one for each pollen veg-
etation type, ranging from 0 (representing an incompatibility
between the BIOME4 type and pollen biome type) to 15 (cor-
responding to maximum compatibility). Secondly, using an
iterative approach, a representative set of climate scenarios
compatible with the vegetation records is identified within
the climate space, constructed by systematically perturbing
the input variables (e.g. 1T , 1P ) of the model (Table S3).

The inverse vegetation model (IVM) provides a possibil-
ity, for the first time, to reconstruct both annual and seasonal
climates for the MH over China. Moreover, it offers a way to
consider the impact of CO2 concentration on competition be-
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Table 6. Regression coefficients between the reconstructed climates by inverse vegetation models and observed meteorological values.

Climate parameter Slope Intercept R ME RMSE

MAT 0.82± 0.02 0.92± 0.18 0.89 0.16 3.25
MTCO 0.81± 0.01 −1.79± 0.18 0.95 −0.17 3.19
MTWA 0.75± 0.03 4.57± 0.60 0.75 −0.19 4.02
MAP 1.15± 0.02 32.90± 18.41 0.94 138.01 263.88
Pjan 1.01± 0.02 0.32± 0.47 0.94 0.52 8.89
Pjul 1.30± 0.03 −21.67± 4.52 0.89 16.45 52.9

The climatic parameters used for regression are the actual values (data source: China Climate Bureau,
China Ground Meteorological Record Monthly Report, 1951–2001). MAT is the annual mean temperature,
MTCO is the mean temperature of the coldest month, MTWA is the mean temperature of the warmest
month, MAP is the annual precipitation, RMSE is the root mean square error of the residuals and ME is the
mean error of the residuals. Pjan: precipitation for January; Pjul: precipitation for July.R is the correlation
coefficient ± standard error.

tween PFTs as well as on the relative abundance of taxa and
thus makes reconstructions from pollen records more reli-
able. More detailed information about the IVM can be found
in Wu et al. (2007).

We applied the inverse model to modern pollen samples
to validate the approach by reconstructing the modern cli-
mate at each site and comparing it with the observed val-
ues. The high correlation coefficients (R = 0.75–0.95), with
intercepts close to 0 (except for the mean temperature of
the warmest month) and slopes close to 1 (except for the
July precipitation), demonstrated that the inversion method
worked well for most variables in China (see Table 6).

2.6 Sensitivity test for vegetation feedback

To quantify the vegetation feedback on climate change dur-
ing the mid-Holocene over China, we performed a sensitiv-
ity test using CESM version 1.0.5. This version, developed
at the National Center for Atmospheric Research, is a widely
used coupled model with dynamic atmosphere (CAM4), land
(CLM4), ocean (POP2) and sea-ice (CICE4) components
(Gent et al., 2011). Here, we use ∼ 2◦ resolution for CAM4
(∼ 1.9◦ for latitude ×2.5◦ for longitude) in the horizontal
direction and 26 layers in the vertical direction. The POP2
adopts a finer grid, with a nominal 1◦ horizontal resolution
and 60 layers in the vertical direction. The land and sea-
ice components have the same horizontal grids as the atmo-
sphere and ocean components, respectively.

Two experiments were conducted, including a mid-
Holocene (MH) experiment (6 ka) with the original vegeta-
tion setting (prescribed as PI vegetation for the MH) and an
MH experiment with reconstructed vegetation (6 ka_VEG).
In detail, experiment 6 ka used the MH orbital parame-
ters (eccentricity: 0.018682; obliquity: 24.105◦; longitude
of the perihelion: 0.87◦) and modern vegetation (Salzmann
et al., 2008). Compared to experiment 6 ka, experiment
6 ka_VEG used our reconstructed vegetation in China. Ex-
cept for the changed vegetation, all other boundary condi-
tions were kept unchanged in these two experiments, includ-

ing the solar constant (1365 W m−2), modern topography
and ice sheet, and pre-industrial greenhouse gases (CO2 =

280 ppmv; CH4 = 760 ppbv; N2O= 270 ppbv). Experiment
6 ka was initiated from the default pre-industrial simulation
and run for 500 model years. Experiment 6 ka_VEG was ini-
tiated from model year 301 of experiment 6 ka and run for
another 200 model years. We analysed the computed clima-
tological means of the last 50 model years from each experi-
ment here.

3 Results

3.1 Comparison of annual and seasonal climate
changes at the MH

In this study, we collected 159 pollen records, broadly cov-
ering the whole of China (Fig. 1). To check the reliability
of the collected data, we first categorized our pollen records
into megabiomes in line with the standard tables developed
for BIOME6000 (Table S1) and compared them with the
BIOME6000 dataset (Fig. 2). The match between the col-
lected data and BIOME6000 is more than 90 % (145 out of
159 sites) for both the MH and PI.

Based on pollen records, the spatial pattern of climate
changes over China during the MH, deduced from IVM,
are presented in Fig. 3a–c (points), alongside the results
from PMIP3 models (shaded in Fig. 3). For temperature, a
warmer-than-present annual climate condition (∼ 0.7 K on
average) is derived from pollen data (the points in Fig. 3a),
with the largest increase occurring in the northeast (3–5 K)
and a decrease in the northwest and on Tibetan Plateau. On
the other hand, the results from a multi-model ensemble
(MME) indicate a generally colder annual temperature (∼
−0.4 K on average), with significant cooling in the south and
slight warming in the northeast (shaded in Fig. 3a). Of the 13
models, 11 simulate a cooler annual temperature compared
with PI than MME. However, two models (HadeGEM2-ES
and CNRM-CM5) present the same warmer condition as was
found in the reconstruction (Fig. 3d). Compared to the re-
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Figure 2. Comparison of megabiomes for PI (a, c) and the MH (b, d): (a, b) BIOME6000 and (c, d) pollen data collected in this study.

construction, the annual mean temperature during the MH is
largely underestimated by most PMIP3 models, which de-
pict an anomaly ranging from ∼−1 to ∼ 0.5 K. Concerning
seasonal change, during the MH, MTWA from the data is
∼ 0.5 K higher than PI, with the largest increase in the north-
east and a decrease in the northwest. From model outputs,
an average increase of ∼ 1.2 K is reproduced by MME, with
more pronounced warming at high latitudes, which is con-
sistent with the insolation change (Berger, 1978). Figure 3e
shows that all 13 models reproduce the same warmer summer
temperatures as the data and that HadGEM2-ES and CNRM-
CM5 reproduce the largest increases among the models. Al-
though models simulate warmer MTWA, which is consistent
with reconstructions, there is a discrepancy between them
on MTCO. In Fig. 3c, the data show an overall increase of
∼ 1 K, with the largest increase occurring in the northeast
and a decrease of opposite magnitude on the Tibetan Plateau.
Inversely, MME reproduces a decreased MTCO with an av-
erage amplitude of ∼−1.3 K, the areas with strongest cool-
ing being the southeast, the Loess Plateau and the north-
west. Similarly to the MME, all 13 models simulate a colder-
than-present climate with amplitudes ranging from∼−2.0 K
(CCSM4 and FGOALS-g2) to∼−0.7 K (HadGEM2-ES and
CNRM-CM5).

Concerning the annual change in precipitation, the recon-
struction shows wetter conditions during the MH across al-

most the whole of China with the exception of part of the
northwest. The southeast presents the largest increase in an-
nual precipitation. All but two models (MIROC-ESM and
FGOALS-g2) depict wetter conditions with an amplitude of
∼ 10 to ∼ 50 mm. The reconstruction and MME results also
indicate an increased annual precipitation during the MH
(Fig. 4a), with a much larger magnitude visible in the recon-
struction (∼ 30 mm and ∼ 230 mm, respectively). The main
discrepancy in annual precipitation between simulations and
reconstruction occurs in the northeast, which is depicted as
drier by the models and wetter by the data. With regard to
seasonal change, the reconstruction shows an overall increase
in July rainfall (∼ 50 mm on average), with a decrease in
the northwestern regions and East Asian monsoon region in
the Yangtze River valley. In line with the reconstruction, the
MME also shows an overall increase in rainfall (∼ 7 mm on
average), with a decrease in the northwest for July (Fig. 4b).
Notably, a much larger increase is simulated for the south
and the Tibetan Plateau by the models, while the opposite
pattern emerges along the eastern margin from both models
and data. For January precipitation, the reconstruction shows
an overall increase in most regions (∼ 15 mm), except for the
northwestern region, while MME indicates a slight decrease
(∼ 3 mm on average). More detailed information about the
geographic distribution of simulated temperature and precip-
itation for each model can be found in Figs. S2–S7.
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Figure 3. Model–data comparison for annual and seasonal (MTWA and MTCO) temperature (K). For (a–c), points represent the reconstruc-
tion from IVM, and shading shows the last 30-year mean simulation results of a multi-model ensemble (MME) for 13 PMIP3 models. The
box-and-whisker plots (d–f) show the changes as indicated by each PMIP3 model and the reconstruction. (d) Changes in annual temperature,
(e) changes in MTWA and (f) changes in MTCO. The lines in each box show the median value from each set of measurements, the box
shows the 25 %–75 % range and the whiskers show the 90 % interval (5th to 95th percentile).

Table S4 provides the biome scores from IVM for pollen
data collected from published papers. The reconstructed cli-
mate change derived from IVM at each pollen site can be
found in Table S5, in which the columns show the median
and the 90 % interval (5th to 95th percentage) for feasible
climate values produced with the IVM approach. The simu-
lated values for each of the climate variables as shown in the
box plots (Figs. 3 and 4) are given in Tables S6 and S7. All
the values mentioned above are the mean of the values at 159
pollen sites.

3.2 Comparison of vegetation change at the MH

The use of the PMIP3 database is clearly limited by the dif-
ferent vegetation inputs among the models for the MH pe-
riod (Table S8). Only HadGEM2-ES and HadGEM2-CC use
dynamic vegetation for the MH, and the vegetation of the
other 11 models is prescribed to PI with or without inter-
active leaf area index (LAI), which can introduce a bias to
the role of vegetation–atmosphere interaction in the MH cli-
mates. To evaluate the model results against the reconstruc-
tion for the MH vegetation, we conducted 13 biome simu-
lations with BIOME4 using the PMIP3 climate fields, and
the megabiome distribution for each model during the MH
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Figure 4. Model–data comparison for annual, July and January precipitation (mm). For (a, b), points represent the reconstruction from IVM,
and shading shows the last 30-year mean simulation results of a multi-model ensemble (MME) for 13 PMIP3 models. The box-and-whisker
plots (d–f) show the changes as indicated by each PMIP3 model and the reconstruction. (d) Changes in annual precipitation, (e) changes in
July precipitation and (f) changes in January precipitation. The lines in each box show the median value from each set of measurements, the
box shows the 25 %–75 % range and the whiskers show the 90 % interval (5th to 95th percentile).

is displayed in Fig. 5 (see Fig. S8 for a comparison of PI
biomes). To quantify the model–data dissimilarity between
megabiomes, a map-based statistic called 1V (Sykes et al.,
1999; Ni et al., 2000) was applied here (see Sect. 2.4).

Figure S9 shows the dissimilarity between simulations and
observations for megabiomes during the MH, with the over-
all values for 1V ranging from 0.43 (HadGEM2-ES) to 0.55
(IPSL-CM5A-LR). According to the classification of 1V

(see Sect. 2.4) for the 13 models, 12 (all except HadGEM2-
ES) showed poor agreement with the observed vegetation
distribution. Most models poorly simulate the desert, grass-
land and tropical forest areas for both periods but perform
better for warm mixed forest, tundra and temperate forest.

However, this statistic is based on a point-to-point compari-
son, so the 1V calculated here cannot represent an estima-
tion of full vegetation simulation due to the uneven distribu-
tion of pollen data and the potentially huge difference in the
area of each megabiome. For instance, tundra in our data for
PI is represented by only 4 points, which counts for a small
contribution to 1V since we averaged it over a total of 159
points, but this calculation could induce a significant bias if
these 4 points are representative of a large area of China.

So, we used the biome scores based on the artificial neural
network technique as described by Guiot et al. (1996) for in-
terpolation (the plots in the red rectangle in Fig. 5) and com-
pared the simulated vegetation distribution from BIOME4
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Figure 5. Comparison of interpolated megabiome distributions (plot in the red rectangle) with the simulated spatial pattern from BIOME4
for each model during the mid-Holocene.

for each model with the interpolated pattern. During the MH,
most models are able to capture the tundra on the Tibetan
Plateau as well as the combination of warm mixed forest
and temperate forest in the southeast. However, all models
fail to simulate or underestimate the desert area in the north-
west compared to reconstructed data. The main model–data
inconsistency in the MH vegetation distribution occurs in the
northeast, where data show a mix of grassland and temperate
forest, and the models show a mix of grassland and boreal
forest.

The area statistics carried out for simulated vegetation
changes (Fig. 6) reveal that the main difference during the
MH, compared with PI, is that grassland replaced boreal for-
est in large tracts of the northeast (Figs. 5, S8). No other sig-

nificant difference in vegetation distribution between the two
periods was derived from the models. Unlike in the models,
three main changes in megabiomes during the MH are de-
picted by the data. Firstly, the megabiomes were converted
from grassland to temperate forest in the northeast. Secondly,
a large area of temperate forest was replaced in the southeast
by a northward expansion of warm mixed forest. Thirdly,
in the northwest and at the northern margin of the Tibetan
Plateau, part of the desert area changed into grassland. How-
ever, none of the models succeed in capturing these features,
especially the transition from grassland into forest in the
northeast during the MH. Therefore, this failure to capture
vegetation changes between the two periods will lead to a
cumulating inconsistency in the model–data comparison for
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Figure 6. Changes in the extent of each megabiome as a consequence of simulated climate changes for each model, both expressed as change
relative to the PI extent of the same megabiome.

climate anomalies if this computed vegetation was used as a
boundary condition in MH climate simulations.

4 Discussion

4.1 Validation and uncertainties of the reconstructions

To investigate the discrepancy between models and recon-
structions for the MH climate change over China, the reli-
ability of our reconstruction should first be considered. We
therefore compared our reconstruction with previous studies
concerning the MH climate change over China based on mul-
tiple proxies (including pollen, lake core, paleosol, ice core,
peat and stalagmite); the related references and detailed in-
formation are listed in the Supplement (Tables S9 and S10).
In comparison with PI conditions, most reconstructions re-
produced warmer and wetter annual conditions during the
MH (Fig. 7), as in our study. In other words, this model–
data discrepancy for climate change over China during the
MH is common and robust with respect to reconstructions
derived from different proxies. Our study reinforces the pic-
ture given by the discrepancies between PMIP simulations
and pollen data based on a synthesis of the literature.

However, there could still be some biases due to the re-
construction method. Estimated climates for the present day
from IVM were compared with observed climates (Table 6).
The slopes and intercepts show a slight bias for annual and
January precipitation, while there is a larger bias between
the IVM reconstruction and observation for temperature and
July precipitation. IVM relies heavily on BIOME4, and since
BIOME4 is a global vegetation model, it is possible that
the spatial robustness of regional reconstruction could be
less than that of global reconstruction due to the failure
to simulate local features (Bartlein et al., 2011). Moreover,
the output of the model cannot be directly compared to the
pollen data, and the conversion of BIOME4 biomes to pollen
biomes by the transfer matrix may add a source of uncer-
tainty in the reconstruction. All these biases in reconstruction
should be considered in the evaluation of the discrepancy be-
tween models and data for climate change during the MH
over China.

4.2 Uncertainties for simulations

The discrepancies between models and data for MH climate
change can also result from uncertainties in simulation and/or
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Figure 7. Comparison between the climate reconstruction and previous reconstruction over China. (a) Previous temperature results. The
diamond is the qualitative reconstruction, red is the temperature increase and green is the temperature decrease; the circle is the quantitative
reconstruction. (b) Mean annual temperature reconstruction in this study; (c) previous precipitation results. The diamond is the qualitative
reconstruction, red is the precipitation decrease and green is the precipitation increase; the circle is the quantitative reconstruction. (d) Mean
annual precipitation reconstruction in this study.

model characteristics. First, the coarse spatial resolution of
models can be a factor of discrepancy: previous studies show
that the GCMs from PMIP3 are reliable in simulating the ge-
ographical distribution of temperature and precipitation over
China for the present day. However, compared with obser-
vations, most models have topography-related cold biases
(Jiang et al., 2016). The climate fields, directly used from
the model output without downscaling, will not contain the
spatial variability of modern climate in topographically com-
plex areas. Thus, it is necessary to determine to what de-
gree model–data mismatch is related to the rough topogra-
phy used in the climate models. In PMIP3, MRI-CGCM3 has
the highest resolution (atmosphere: 320× 160×L48; ocean:
364× 368×L51), while IPSL-CM5A-LR has the lowest
(atmosphere: 96× 96×L39; ocean: 182× 149×L31). In
Fig. 8, we give the actual modern topography and the inter-
polated topography used in MRI-CGCM3 and IPSL-CM5A-
LR. For MRI-CGCM3, the topography is very close to the
observation, so for this model, the model–data discrepancy
during the MH over China is not related to the resolu-

tion. However, for the model with coarse resolution (IPSL-
CM5A-LR), it is true that the coarse version of the model
will lead to a bias in topography when regional diversity
is discussed. The spatial variations in topography could in-
fluence the vegetation and hence the simulated climate. To
quantify this impact, we compare the topography and PI cli-
mate results of IPSL-CM5A-LR and IPSL-CM5A-MR. Fig-
ure 9 shows that the difference in topography caused by
model resolution does have an impact on small scales (e.g.
southern region of the Tibetan Plateau) but not on the overall
pattern. However, small- or regional-scale variations in cli-
mate can have a large impact on vegetation and hence recon-
structed climate. For better comparison in the future work,
downscaled climate variables should be considered.

Secondly, besides the qualitative consistency among mod-
els caused by the protocol of PMIP3 experiments (Table 2),
variability in the magnitude of anomalies between models
is clearly illustrated by the box plots (Figs. 3 and 4), espe-
cially for the temperature anomaly. Figure S10 demonstrates
that there is no clear relationship between PI temperature and
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Figure 8. The topography comparison between models and observations.

temperature anomaly (MH–PI). In other words, these dispar-
ities in value or even pattern among models are not related to
the difference in PI simulations in a simple manner; instead,
they reflect the obvious differences in the response by the cli-
mate models to the MH forcing, which raises the question of
the magnitude of feedbacks among models.

As positive feedbacks between climate and vegetation are
important to explain regional climate changes, the failure
of the models to represent the amplitude and pattern of the
observed vegetation differences (see Sect. 3.2) could am-
plify and partly account for the model–data disparities in cli-
mate change, mainly due to variations in the albedo. Because
HadGEM2-ES and HadGEM2-CC are the only two mod-
els in PMIP3 with a dynamic vegetation simulation for the
MH, we focused on these models to examine the variations
in vegetation fraction in the simulations. The main vegeta-
tion changes during the MH demonstrated by HadGEM2-ES
are an increased tree coverage (∼ 15 %) and a decreased bare
soil fraction (∼ 6 %), while HadGEM2-CC depicts a ∼ 3 %
decrease in tree fraction and a ∼ 1 % increase in bare soil
(Fig. S11). We made a rough calculation of albedo vari-
ance caused solely by vegetation change for both models
and for our reconstruction based on the area fraction and

albedo value of each vegetation type (Betts, 2000; Bonfils et
al., 2001; Oguntunde et al., 2006; Bonan, 2008). The overall
albedo change from the vegetation reconstruction during the
MH shows a ∼ 1.8 % decrease when snow free, with a much
larger impact (∼ 4.2 % decrease) when snow covered. The
results from HadGEM2-ES are highly consistent with the
albedo changes from the reconstruction, featuring a ∼ 1.4 %
(∼ 6.5 %) decrease without (with) snow, while HadGEM2-
CC produces an increased albedo value during the MH (∼
0.22 % for snow free, ∼ 1.9 % with snow cover), depend-
ing on its vegetation simulation. Two ideas could be inferred
from this calculation: (1) HadGEM2-ES is much better in
simulating the MH vegetation changes than HadGEM2-CC,
and (2) the failure by models to capture these vegetation
changes will result in a much larger impact on winter albedo
(with snow) than summer albedo (without snow). In conclu-
sion, there is an obvious advantage of using AOVGCM in-
stead of AOGCM when discussing the MH climate, but the
premise is that the AOVGCM can simulate an accurate veg-
etation distribution.

These surface albedo changes due to vegetation changes
could have a cumulative effect on the regional climate by
modifying the radiative fluxes. For instance, the spread of
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Figure 9. The pre-industrial climate comparison between simulations and observations. “Tas” means temperature 2 m above the surface, and
“pr” means precipitation.

trees into the grassland biome in the northeast during the
MH, revealed by the reconstruction in our study, should act
as a positive feedback to climate warming by increasing the
surface net shortwave radiation associated with reductions in
albedo due to taller and darker canopies (Chapin et al., 2005).
Previous studies show that cloud and surface albedo feed-
backs on radiation are major drivers of differences between
model outputs for past climates. Moreover, the land surface
feedback shows large disparities among models (Braconnot
and Kageyama, 2015).

We used a simplified approach (Taylor et al., 2007) to
quantify the feedbacks and to compare model behaviour for
the MH, thus justifying the focus on surface albedo and at-
mospheric scattering (mainly accounting for cloud change).
Surface albedo and cloud change are calculated using the
simulated incoming and outgoing radiative fluxes at the
Earth’s surface and at the top of the atmosphere (TOA) based
on data for the last 30 years averaged from all models. Us-
ing this framework, we quantified the effect of changes in
albedo on the net shortwave flux at TOA (Braconnot and
Kageyama, 2015) and further investigated the relationship
between these changes and temperature change. Figure 10
shows that most models produced a negative cloud cover and
surface albedo feedback on the annual mean shortwave ra-
diative forcing. Concerning seasonal change, the shortwave
cloud and surface feedback in most models tend to counter-
act the insolation forcing during the boreal summer, while

they enhance the solar forcing during winter. A strong pos-
itive correlation between albedo feedback and temperature
change is depicted, with a large spread in the models ow-
ing to the difference in albedo in the 13 models. In particu-
lar, CNRM-CM5 and HadGEM2-ES capture higher values of
cloud and surface albedo feedback, which could be the rea-
son for the reversal of the decreased annual temperature seen
in other models (Fig. 3d).

However, the vegetation patterns produced by BIOME4
in Fig. 5 are not used in the PMIP3 experimental set-up.
They are only determined by the input variables from mod-
els. Therefore, the disagreements on the MH vegetation pat-
tern are possibly inherited from the PI. To better quantify
the vegetation–climate feedback, two experiments were con-
ducted in CESM version 1.0.5, including a mid-Holocene
(MH) experiment (6 ka) with the original vegetation setting
(prescribed as PI vegetation for the MH) and an MH experi-
ment with reconstructed vegetation (6 ka_VEG). Figure 11
shows the climate anomalies (6 ka_VEG minus 6 ka) be-
tween two simulations for both the annual and seasonal scale.
For temperature, it is clear that the 6 ka_VEG simulation re-
produces a warmer annual mean climate (∼ 0.3 K on aver-
age) as well as an obviously warmer winter (∼ 0.6 K on aver-
age). For precipitation, the reconstructed vegetation leads to
more annual and seasonal precipitation, which can also rec-
oncile the model–data discrepancy of an increased amplitude
for precipitation during the MH (the data reproduced a larger
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Figure 10. Scatter plots showing temperature, cloud cover feedback and surface albedo feedback changes during the MH. The values shown
are the simulated 30-year mean anomaly (MH–PI) for the 13 models. (a) Annual mean temperature relative to the annual mean cloud cover
feedback and (d) annual surface albedo feedback. (b) Summer (JJA) mean temperature relative to the summer mean cloud cover feedback and
(e) summer surface albedo feedback. (c) Winter (DJF) mean temperature relative to the summer mean cloud cover feedback and (f) winter
surface albedo feedback. The horizontal and vertical lines in the plots represent the value of 0.
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Figure 11. Climate anomalies between the two experiments (6 ka and 6 ka_VEG) conducted in CESM version 1.0.5. The anomalies
(6 ka_VEG-6 ka) of temperature and precipitation at both the annual and seasonal scale are presented, and all these climate variables are
calculated as the last 50-year means from two simulations.

amplitude than the model, as revealed by our study). So the
mismatch between models and data in terms of MH vegeta-
tion could partly account for the discrepancy in climate due
to the interaction between vegetation and climate through ra-
diative and hydrological forcing with albedo. These results
highlight the value of building a new generation of models
able to capture not only the atmosphere and ocean response,
but also the non-linear responses of vegetation and hydrology
to climate change.

5 Conclusion

In this study, we compare the annual and seasonal outputs
from the PMIP3 models with an updated synthesis of climate
reconstructions over China, including, for the first time, the
seasonal cycle of temperature and precipitation. In response
to the seasonal insolation change prescribed in PMIP3 for the
MH, all models produce similar large-scale patterns for sea-
sonal temperature and precipitation (higher than present July
precipitation and MTWA, lower than present MTCO). The
main discrepancy emerging from the model–data compari-
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son occurs for the mean annual temperature and MTCO; data
show an increased value and most models simulate the op-
posite except CNRM-CM5 and HadGEM2-ES, which repro-
duced the higher-than-present MH annual temperature. By
conducting simulations with BIOME4 and CESM, we show
that surface processes are the key factors explaining the dis-
crepancies between models and data. These results show the
importance of including the non-linear responses of the sur-
face water and energy balance related to vegetation changes.
However, it should also be noted that prescribing the veg-
etation with reconstructed biomes would reduce the power
of the biome-based climate reconstruction owing to the po-
tential circularity (prescribe the vegetation to get the vegeta-
tion). Moreover, besides the vegetation influence, the impact
of rough topography, soil type and other possible factors on
model–data discrepancy remains to be investigated in future
work.

Data availability. The PMIP3 output is publicly available on the
PMIP website (http://pmip3.lsce.ipsl.fr/, last access: 21 June 2019).
The 65 pollen biomization results are provided by the Members
of the China Quaternary Pollen Database (CQPD). Table 1 shows
the information (including references) on the 91 collected pollen
records and 3 original ones in our study; the biome scores of
these 94 pollen records derived from IVM are listed in Table S4,
and the digitized data on pollen can be requested from Qin Li
(liqin@mail.iggcas.ac.cn). All the reconstructed climate values at
each pollen site from IVM are provided in Table S5. For the data
from CQPD, the basic information (location, data supporter, age
control and biome type of each site) can be found in CQPD (2000),
while the original data are not publicly available yet. These data can
be requested from Yunli Luo (lyl@ibcas.ac.cn; Institute of Botany,
Chinese Academy of Sciences, Beijing, 100093, China), a core
member and academic secretary of the CQPD.
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