Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F.: Parallel
Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic
inference, Bioinformatics, 20, 407–415, 2004. a

Anderson, J. L. and Anderson, S. L.: A Monte Carlo Implementation of the
Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts,
Mon. Weather Rev., 127, 2741–2758, 1999. a

Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, 2013. a

Bartlein, P., Harrison, S., Brewer, S., Connor, S., Davis, B., Gajewski, K.,
Guiot, J., Harrison-Prentice, T., Henderson, A., Peyron, O., Prentice, I.,
Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R., Viau, A.,
Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at
6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, 2011. a, b, c, d, e

Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and
Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary
Biological Proxies, The Open Ecology Journal, 3, 68–110, 2010. a

Braconnot, P., Harrison, S. P., Otto-Bliesner, B., Abe-Ouchi, A., Jungclaus,
J., and Peterschmitt, J.-Y.: The Paleoclimate Modeling Intercomparison
Project contribution to CMIP5, CLIVAR Exchanges, 56, 15–19, 2011. a, b

Bradley, R. S.: Paleoclimatology – Reconstructing Climates of the Quaternary,
Academic Press, Oxford, 3 Edn., 324–327, 2015. a, b

Brier, G.: Verification of Forecasts Expressed in Terms of Probability, Mon.
Weather Rev., 78, 1–3, 1950. a

Brooks, S. P. and Gelman, A.: General Methods for Monitoring Convergence of
Iterative Simulations, J. Comput. Graph. Stat.,
7, 434–455, 1998. a

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences. An overview on methods, issues and perspectives, WIREs
Climate Change, available at: https://arxiv.org/abs/1709.02798 (last acces: 30 May 2019), 2018. a, b

Dee, S., Steiger, N. J., Hakim, G. J., and Emile-Geay, J.: On the utility of
proxy system models for estimating climate states over the common era,
J. Adv. Model. Earth Sy., 8, 1164–1179, 2016. a

Friedman, J., Hastie, T., and Tibshirani, R.: Sparse inverse covariance
estimation with the graphical lasso, Biostatistics, 9, 432–441, 2008. a

Gebhardt, C., Kühl, N., Hense, A., and Litt, T.: Multi-Scale Processes and
the Reconstruction of Palaeoclimate, in: Dynamics of Multiscale Earth Systems, edited by: Neugebauer, H. J.
and Simmer, C., Springer, Berlin,
325–336, 2003. a

Gebhardt, C., Kühl, N., Hense, A., and Litt, T.: Reconstruction of
Quaternary temperature fields by dynamically consistens smoothing, Clim.
Dynam., 30, 421–437, 2008. a, b, c, d, e, f

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D.:
Bayesian data analysis, vol. 3, Chapman & Hall, CRC Press, Boca Raton, 2013. a, b

Geyer, C.: Markov chain Monte Carlo maximum likelihood, in:
Computing Science and Statistics: Proceedings of the 23rd
Symposium on the Interface, Interface Foundation, edited by: Keramidas, E. M., Fairfax Station, 156–163, 1991. a, b

Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules, Prediction, and
Estimation, J. Am. Stat. Assoc., 102,
359–378, 2007. a

Gomez-Navarro, J. J., Werner, J., Wagner, S., Luterbacher, J., and Zorita, E.:
Establishing the skill of climate field reconstruction techniques for
precipitation with pseudoproxy experiments, Clim. Dynam., 45, 1395–1413,
2015. a

Gray, H., Leday, G. G., Vallejos, C. A., and Richardson, S.: Shrinkage
estimation of large covariance matrices using multiple shrinkage targets,
arXiv:1809.08024v1, 1–32, available at: https://arxiv.org/abs/1809.08024v1 (last access: 30 May 2019), 2018. a

Hannart, A. and Naveau, P.: Estimating high dimensional covariance matrices: A
new look at the Gaussian conjugate framework, J. Multivariate
Anal., 131, 149–162, 2014. a

Harris, I. and Jones, P.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series
(TS) version 4.01 of high-resolution gridded data of month-by-month variation
in climate (January 1901–December 2016),
https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (last access: 30 May 2019), 2017. a

Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset,
Int. J. Climatol., 34, 623–642, 2014. a

Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M., Wilson, S. P.,
Allen, J., Huntley, B., and Mitchell, F.: Bayesian paleoclimate
reconstruction, J. R. Stat. Soc. A
Stat., 169, 395–438, 2006. a

Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of
climate change, WIREs Clim Change, 2, 570–591, 2011. a

Holden, P. B., Birks, H. J. B., Brooks, S. J., Bush, M. B., Hwang, G. M., Matthews-Bird, F., Valencia, B. G., and van Woesik, R.: BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction, Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, 2017. a

Holmström, L., Ilvonen, L., Seppä, H., and Veski, S.: A Bayesian
Spatiotemporal Model for Reconstructing Climate from Multiple Pollen Records,
Ann. Appl. Stat., 9, 1194–1225, 2015. a

Iversen, J.: Viscum, Hedera and Ilex as climate indicators, Geologiska
Foereningens i Stockholm foerhandlingar, 66, 463–483, 1944. a

Jones, P., New, M., Parker, D., Martin, S., and Rigor, I.: Surface air
temperature and its variations over the last 150 years, Rev.
Geophys., 37, 173–199, 1999. a

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges
in combining projections from multiple climate models, J. Clim.,
23, 2739–2758, 2010. a

Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang,
Z., Williford, C. E., Gadgil, S., and Surendran, S.: Improved Weather and
Seasonal Climate Forecasts from Multimodel Superensemble, Science, 285,
1548–1550, 1999. a

Kühl, N., Gebhardt, C., Litt, T., and Hense, A.: Probability Density
Functions as Botanical-Climatological Transfer Functions for Climate
Reconstruction, Quarternary Res., 58, 381–392, 2002. a, b, c, d

Kühl, N., Litt, T., Schölzel, C., and Hense, A.: Eemian and Early
Weichselian temperature and precipitation variability in northern Germany,
Quarternary Sci. Rev., 26, 3311–3317, 2007. a

Li, B., Nychka, D. W., and Ammann, C. M.: The Value of Multiproxy
Reconstruction of Past Climate, J. Am. Stat.
Assoc., 105, 883–895, 2010. a

Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial differential
equation approach, J. R. Stat. Soc. B Met., 73, 423–498, 2011. a, b, c

Liu, B., Ait-El-Fquih, B., and Hoteit, I.: Efficient Kernel-Based Ensemble
Gaussian Mixture Filtering, Mon. Weather Rev., 144, 781–800, 2016. a

Liu, F., Bayarri, M., and Berger, J.: Modularization in Bayesian analysis, with
emphasis on analysis of computer models, Bayesian Anal., 4, 119–150,
2009. a

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and
Langtimm, C. A.: Estimating site occupancy rates when detection probabilities
are less than one, Ecology, 83, 2248–2255, 2002. a

Matheson, J. and Winkler, R.: Scoring Rules for Continuous Probability
Distributions, Manage. Sci., 22, 1087–1096, 1976. a

Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison, Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, 2014. a, b

Mauri, A., Davis, B., Collins, P., and Kaplan, J.: The climate of Europe during
the Holocene: a gridded pollen-based reconstruction and its multi-proxy
evaluation, Quaternary Sci. Rev., 112, 109–127, 2015. a, b, c, d, e, f

Ohlwein, C. and Wahl, E. R.: Review of probabilistic pollen-climate transfer
methods, Quaternary Sci. Rev., 31, 17–29, 2012. a

Parnell, A. C., Sweeney, J., Doan, T. K., Salter-Townshend, M., Allen, J. R.,
Huntley, B., and Haslett, J.: Bayesian inference for palaeoclimate with time
uncertainty and stochastic volatility, J. Roy. Stat.
Soc. C-Appl., 64, 115–138, 2015. a, b, c

Parnell, A. C., Haslett, J., Sweeney, J., Doan, T. K., Allen, J. R., and
Huntley, B.: Joint Palaeoclimate reconstruction from pollen data via forward
models and climate histories, Quarternary Sci. Rev., 151, 111–126,
2016. a

Plummer, M., Best, N., Cowles, K., and Vines, K.: CODA: Convergence Diagnosis
and Output Analysis for MCMC, R News, 6, 7–11, 2006. a

Polson, N. G., Scott, J. G., and Windle, J.: Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables, J. Am. Stat. Assoc., 108, 1339–1349,
2013. a, b, c

Rehfeld, K., Trachsel, M., Telford, R. J., and Laepple, T.: Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world, Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, 2016. a, b

Rue, H. and Held, L.: Gaussian Markov random fields : theory and applications,
Chapman & Hall/CRC (Taylor & Francis Group), Boca Raton, 2005. a

Schölzel, C., Hense, A., Hübl, P., Kühl, N., and Litt, T.: Digitization
and geo-referencing of botanical distribution maps, J. Biogeogr.,
29, 851–856, 2002. a, b

Silverman, B.: Density Estimation for Statistics and Data Analysis, vol. 26 of
Monographs on Statistics and Applied Probability, Chapman & Hall/CRC, Boca Raton, 1986. a, b, c

Simonis, D.: Reconstruction of possible realizations of the Late Glacial and
Holocene near surface climate in Central Europe, Dissertation,
Meteorologisches Institut der Rheinischen Friedrich-Wilhelms-Universität
Bonn, 2009. a, b, c, d, e, f

Simonis, D., Hense, A., and Litt, T.: Reconstruction of late Glacial and Early
Holocene near surface temperature anomalies in Europe and their statistical
interpretation, Quaternary Int., 274, 233–250, 2012. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p

Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., and Roe, G. H.:
Assimilation of Time-Averaged Pseudoproxies for Climate Reconstruction,
J. Clim., 27, 426–441, 2014. a

Stolzenberger, S.: Untersuchungen zu botanischen
Paläoklimatransferfunktionen, Diploma thesis, Meteorologisches Institut
der Rheinischen Friedrich-Wilhelms-Universität Bonn, 2011. a, b

Stolzenberger, S.: On the probabilistic evaluation of decadal and paleoclimate
model predictions, Dissertation, Meteorologisches Institut der Rheinischen
Friedrich-Wilhelms-Universität Bonn, 2017. a, b

Tawn, N. G. and Roberts, G. O.: Accelerating Parallel Tempering: Quantile
Tempering Algorithm (QuanTA), Adv. Appl. Probab., in press, available at: https://arxiv.org/abs/1808.10415v1 (Last access: 30 May 2019), 2019. a

Thuiller, W.: BIOMOD – optimizing predictions of species distributions and
projecting potential future shifts under global change, Glob. Change
Biol., 9, 1353–1362, 2003. a

Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing Climate
Anomalies in Space and Time. Part I: Development and Applications to
Paleoclimate Reconstruction Problems, J. Clim., 23, 2759–2781,
2010. a, b

Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and
Rajaratnam, B.: Piecing together the past: statistical insights into
paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22, 2012.
a

Weitzel, N: Spatial_reconstr_repo,
available at: https://bitbucket.org/nils_weitzel/spatial_reconstr_repo,
last access: 30 May 2019.

Werner, J. P. and Tingley, M. P.: Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model, Clim. Past, 11, 533–545, https://doi.org/10.5194/cp-11-533-2015, 2015. a

Windle, J., Polson, N. G., and Scott, J. G.: BayesLogit: Bayesian logistic
regression, available at: http://cran.r-project.org/web/packages/BayesLogit/index.html (last access: 30 May 2019),
2013. a

Windle, J., Polson, N. G., and Scott, J. G.: Sampling Pólya-Gamma random
variates: alternate and approximate techniques, arXiv:1405.0506v1, available at: https://arxiv.org/abs/1405.0506v1 (last access: 30 May 2019),
2014. a

Yang, Z. and Zhu, T.: The good, the bad, and the ugly: Bayesian model selection
produces spurious posterior probabilities for phylogenetic trees,
arXiv:1810.05398v1, available at: https://arxiv.org/abs/1810.05398v1 (last access: 30 May 2019), 2018. a