Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.48 CiteScore
    3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
CP | Articles | Volume 15, issue 1
Clim. Past, 15, 169-187, 2019
https://doi.org/10.5194/cp-15-169-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Clim. Past, 15, 169-187, 2019
https://doi.org/10.5194/cp-15-169-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jan 2019

Research article | 29 Jan 2019

Precipitation δ18O on the Himalaya–Tibet orogeny and its relationship to surface elevation

Hong Shen and Christopher J. Poulsen
Viewed  
Total article views: 1,033 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
857 162 14 1,033 41 11 17
  • HTML: 857
  • PDF: 162
  • XML: 14
  • Total: 1,033
  • Supplement: 41
  • BibTeX: 11
  • EndNote: 17
Views and downloads (calculated since 12 Sep 2018)
Cumulative views and downloads (calculated since 12 Sep 2018)
Viewed (geographical distribution)  
Total article views: 821 (including HTML, PDF, and XML) Thereof 821 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 20 Feb 2019
Publications Copernicus
Download
Short summary
The stable isotopic composition of water (δ18O) preserved in terrestrial sediments has been used to reconstruct surface elevations. The method is based on the observed decrease in δ18O with elevation, attributed to rainout during air mass ascent. We use a climate model to test the δ18O–elevation relationship during Tibetan–Himalayan uplift. We show that δ18O is a poor indicator of past elevation over most of the region, as processes other than rainout are important when elevations are lower.
The stable isotopic composition of water (δ18O) preserved in terrestrial sediments has been used...
Citation