Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO$_2$ concentration

Dana L. Royer1, Kylen M. Moynihan1, Melissa L. McKee1, Liliana Londoño2, and Peter J. Franks3

1Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut, USA
2Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
3Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales, Australia

Correspondence: Dana L. Royer (droyer@wesleyan.edu)

Abstract. Leaf gas-exchange models show considerable promise as paleo-CO$_2$ proxies. They are largely mechanistic in nature, provide well-constrained estimates even when CO$_2$ is high, and can be applied to most subaerial, stomata-bearing fossil leaves from C$_3$ taxa, regardless of age or taxonomy. Here we place additional observational and theoretical constraints on one of these models, the “Franks” model. In order to gauge the model’s general accuracy in a way that is appropriate for fossil studies, we estimated CO$_2$ from 40 species of extant angiosperms, conifers, and ferns based only on measurements that can be made directly from fossils (leaf δ13C and stomatal density and size) and on a limited sample size (one to three leaves per species). The mean error rate is 28%, which is similar to or better than the accuracy of other leading paleo-CO$_2$ proxies. We find that leaf temperature and photorespiration do not strongly affect estimated CO$_2$, although more work is warranted on the possible influence of O$_2$ concentration on photorespiration. Leaves from the lowermost 1–2 m of closed-canopy forests should not be used because the local air δ13C value is lower than the global well-mixed value. Such leaves are not common in the fossil record but can be identified by morphological and isotopic means.

1 Introduction

Leaves on terrestrial plants are well poised to record information about the concentration of atmospheric CO$_2$. They are in direct contact with the atmosphere and have large surface-area-to-volume ratios, so the leaf internal CO$_2$ concentration is tightly coupled to atmospheric CO$_2$ concentration. Also, leaves are specifically built for the purpose of fixing atmospheric carbon into structural tissue and face constant selection pressure to optimize their carbon uptake relative to water loss. As a result, many components of the leaf system are sensitive to atmospheric CO$_2$, and these components feed back on one another to reach a new equilibrium when atmospheric CO$_2$ changes. In terms of carbon assimilation, Farquhar and Sharkey (1982) modeled this system in its simplest form as

$$A_n = g_{c(tot)} \times (c_a - c_i),$$

where A_n is the leaf CO$_2$ assimilation rate (µmol m$^{-2}$ s$^{-1}$), $g_{c(tot)}$ is the total operational conductance to CO$_2$ diffusion from the atmosphere to the site of photosynthesis (mol m$^{-2}$ s$^{-1}$), c_a is atmospheric CO$_2$ concentration (µmol mol$^{-1}$ or ppm), and c_i is leaf intercellular CO$_2$ concentration (µmol mol$^{-1}$ or ppm) (see also Von Caemmerer, 2000). Rearranging Eq. (1) for atmospheric CO$_2$ yields

$$c_a = \frac{A_n}{g_{c(tot)}} \times \left(1 - \frac{c_i}{c_a}\right).$$

Equation (2) forms the basis of two leaf gas-exchange approaches for estimating paleo-CO$_2$ from fossils (Konrad et al., 2008, 2017; Franks et al., 2014). In the Franks model, conductance is estimated in part from measurements of stomatal size and density, c_i/c_a from measurements of leaf δ13C along with reconstructions of coeval air δ13C (see also Eq. 9), and A_n from knowledge of living relatives and its dependency on c_a (Franks et al., 2014). Following Farquhar et al. (1980), the latter is modeled as (Franks et al., 2014;
Kowalczyn et al., 2018)

\[
A_n = A_0 \left[\left(\frac{c_a}{c_{a0}} \right) c_a - \Gamma^* \right] \left(\frac{c_{a0}}{c_{a0}} \right) c_{a0} + 2\Gamma^* \left(\frac{c_{a0}}{c_{a0}} \right) c_{a0} - \Gamma^*
\]

(3)

where \(\Gamma^* \) is the CO\(_2\) compensation point in the absence of dark respiration (ppm), and the subscript “0” refers to conditions at a known CO\(_2\) concentration (typically present day).

Equations (2) and (3) are then solved iteratively until the solution for \(c_a \) converges.

These gas-exchange approaches grew out of a group of paleo-CO\(_2\) proxies based on the CO\(_2\) sensitivity of stomatal density (\(D \)) or the similar metric stomatal index (Woodward, 1987; Royer, 2001). Here, the \(D-c_a \) sensitivity is calibrated in an extant species, allowing for paleo-CO\(_2\) inference from the same (or very similar) fossil species. These empirical relationships typically follow a power-law function (Wynn, 2003; Franks et al., 2014; Konrad et al., 2017):

\[
c_a = \frac{1}{kD^a}
\]

(4)

where \(k \) and \(a \) are species-specific constants.

The related stomatal ratio proxy is simplified: \(D \) is measured in an extant species (\(D_0 \), at present-day \(c_{a0} \)) and then the ratio of \(D_0 \) to \(D \) in a related fossil species is assumed to be linearly related to the ratio of paleo-\(c_a \) to present-day \(c_{a0} \) (Chaloner and McElwain, 1997; McElwain, 1998):

\[
\frac{c_a}{c_{a0}} = k \frac{D_0}{D}
\]

(5)

Equation (5) can be rearranged to match Eq. (4) but with \(a \) fixed at 1. Thus, paleo-CO\(_2\) estimates using the stomatal ratio proxy are based on a one-point calibration and an assumption that \(a = 1 \); observations do not always support this assumption (e.g., \(a = 0.43 \) for \textit{Ginkgo biloba}; Barclay and Wing, 2016). The scalar \(k \) was originally set at 2 for Paleozoic and Mesozoic reconstructions so that paleo-CO\(_2\) estimates during the Carboniferous matched that from long-term carbon cycle models (Chaloner and McElwain, 1997). For younger reconstructions, \(k \) is probably closer to 1 (by definition, \(k = 1 \) for present-day plants). We note that the stomatal ratio proxy was originally conceived as providing qualitative information only about paleo-CO\(_2\) (McElwain and Chaloner, 1995, 1996; Chaloner and McElwain, 1997; McElwain, 1998) and has not been tested with dated herbaria materials or with CO\(_2\) manipulation experiments.

At high CO\(_2\), the \(D-c_a \) sensitivity saturates in many species, leading to uncertain paleo-CO\(_2\) estimates, often with unbounded upper limits (e.g., Smith et al., 2010; Doria et al., 2011). Stomatal density does not respond to CO\(_2\) in all species (Woodward and Kelly, 1995; Royer, 2001), and because \(D-c_a \) relationships can be species specific (that is, different species in the same genus with different responses; Beerling, 2005; Haworth et al., 2010), only fossil taxa that are still alive today should be used. The gas-exchange proxies partly address these limitations: (1) CO\(_2\) estimates remain well-bounded – even at high CO\(_2\) – and their precision is similar to or better than other leading paleo-CO\(_2\) proxies (\(\sim +35/–25 \% \) at 95 \% confidence; Franks et al., 2014) and (2) the models are mostly mechanistic; that is, they are explicitly driven by plant physiological principles, not just empirical relationships measured on living plants. (3) Because the models retain sensitivity at high CO\(_2\) and do not require that a fossil species still be alive today, much of the paleobotanical record is open for CO\(_2\) inference, regardless of age or taxonomy. (4) Because the models are based on multiple inputs linked by feedbacks, they can still perform adequately even if one or more of the inputs in a particular taxon is not sensitive to CO\(_2\), for example stomatal density (Milligan et al., 2019).

We note that the published uncertainties (precision) associated with the stomatal density proxies are probably too small because they usually only reflect uncertainty in either the calibration regression or in the measured values of fossil stomatal density, but not both; when both sources are propagated, errors often exceed \(\pm 30 \% \) at 95 \% confidence (Beerling et al., 2009). Also, error rates in estimates from extant taxa for which CO\(_2\) is known (accuracy) are usually smaller with stomatal density proxies than with gas-exchange proxies (e.g., Barclay and Wing, 2016), but this is expected because the same taxa have been calibrated in present-day (or near present-day) conditions. Because the gas-exchange proxies are largely built from physiological principles, they have less “recency” bias; that is, the gas-exchange proxies estimate present-day and paleo-CO\(_2\) with similar certainty when the same methods are used to determine the inputs.

2 Study aims and methods

Leaf gas-exchange proxies for paleo-CO\(_2\) are becoming popular (Konrad et al., 2008, 2017; Grein et al., 2011a, b, 2013; Erdle et al., 2012; Roth-Nebelsick et al., 2012, 2014; Franks et al., 2014; Maxbauer et al., 2014; Montañez et al., 2016; Reichgelt et al., 2016; Tesfamichael et al., 2017; Kowalczyn et al., 2018; Lei et al., 2018; Londoño et al., 2018; Richey et al., 2018; Milligan et al., 2019). However, many elements in these models remain understudied. Here we scrutinize four such elements of the Franks et al. (2014) model and ask the following: how does the model perform across a large number of phylogenetically diverse taxa? And how is the model affected by temperature, photorespiration, and proximity to the forest floor? We next describe the motivation and details of the study design (see also Table 1 for a summary).

2.1 General testing in living plants

Franks et al. (2014) tested the model on four species of field-grown trees (three gymnosperms and one angiosperm) and one conifer grown in chambers at 480 and 1270 ppm
CO_2. The average error rate (absolute value of estimated CO_2 minus measured CO_2, divided by measured CO_2) was 5%. Follow-up work with three field-grown tree species (Maxbauer et al., 2014; Kowalczyk et al., 2018), CO_2 experiments on seven tropical trees species (Londoño et al., 2018), and experiments on two fern and one conifer species (Milligan et al., 2019) indicate somewhat higher error rates (Fig. 1). Combined, the average error rate is 20% (median 13%).

In these studies, two of the key physiological inputs were measured directly with an infrared gas analyzer: the assimilation rate at a known CO_2 concentration (A_0) and/or the ratio of operational to maximum stomatal conductance to CO_2 (g_(c(op))/g_(c(max)), or ζ), the latter of which is important for calculating the total leaf conductance (g_(c_tot)). These two inputs cannot be directly measured on fossils; thus, the error rates associated with Fig. 1 may not be representative for fossil studies. Franks et al. (2014) argue that within plant functional types growing in their natural environment, mean A_0 is fairly conservative, leading to the recommended mean A_0 values in Franks et al. (2014) (12 μmol m^{-2} s^{-1} for angiosperms, 10 for conifers, and 6 for ferns and ginkgos). Along similar lines, the mean ratio g_(c(op))/g_(c(max)) tends to be conserved across plant functional types; Franks et al. (2014) recommend a value of 0.2, which may correspond to the most efficient set point for stomata to control conductance (Franks et al., 2012). This conservation of physiological function is one of the underlying principles in the Franks model.

Here we test this assumption by estimating CO_2 from 40 phylogenetically diverse species of field-grown trees. In making these estimates, we use the recommended mean values of A_0 and g_(c(op))/g_(c(max)) from Franks et al. (2014) instead of measuring them directly (see also Montañez et al., 2016, for other ways to infer assimilation rate from fossils). Thus, this dataset should be a more faithful gauge for model accuracy as applied to fossils. Of the 40 species, 21 were previously published in Londoño et al. (2018), who collected sun-adapted canopy leaves of angiosperms using a crane in Parque Nacional San Lorenzo, Panama. To test the method in temperate forests, we collected leaves from 11 angiosperm and 7 conifer species from Dinosaur State Park (Rocky Hill, Connecticut), Wesleyan University (Middletown, Connecticut), and Connecticut College (New London, Connecticut) during the summer of 2015. Here, all trees grew in open, park-like settings; one to three sun leaves were sampled from the lower outside crown of each tree. In January of 2015, we also sampled sun-exposed leaves from the tree fern _Cyathea arborea_ in El Yunque National Forest, Puerto Rico (near the Yokahú Tower).

Stomatal size and density were measured either on untreated leaves using epifluorescence microscopy with a 420–490 nm filter or on cleared leaves (using 50% household bleach or 5% NaOH) using transmitted-light microscopy. For most species, whole-leaf δ^{13}C comes from Royer and Hren (2017); the same leaves were measured for δ^{13}C and stomatal morphology. The UC Davis Stable Isotope Facility measured some additional leaf samples. Atmospheric CO_2 concentration (400 ppm) and δ^{13}C_air (−8.5‰) come from Mauna Loa, Hawai‘i (NOAA/ESRL, 2019), which we assume are representative of the local conditions under which we sampled (e.g., Munger and Hadley, 2017). Table S1 summarizes for these 40 species all of the inputs needed to run the Franks model, along with the estimated CO_2 concentrations. Uncertainties in the estimates are based on error propagation using Monte Carlo simulations (Franks et al., 2014).

2.2 Temperature

The Franks model can be configured for any temperature. Franks et al. (2014) recommend that the photosynthesis parameters A_0 and T^*, and the air physical properties affecting the diffusion of CO_2 into the leaf (the ratio of CO_2 diffusivity in air to the molar volume of air, or d/ν), correspond to the mean daytime growing-season leaf temperature (more precisely, assimilation-weighted leaf temperature). The reasoning behind this is that (i) the assimilation-weighted leaf temperature corresponds to the mean c_1/c_3 derived from fossil leaf δ^{13}C, and (ii) both theory (Michaletz et al., 2015, 2016) and observations (Helliker and Richter, 2008; Song et al., 2011) indicate that the control of leaf gas exchange leads to relatively stable assimilation-weighted leaf temper-

<table>
<thead>
<tr>
<th>Element of model tested</th>
<th>Number of species</th>
<th>Methods section</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General testing in a phylogenetically diverse set of species and with a minimal number of leaves measured per species</td>
<td>40</td>
<td>2.1</td>
<td>Leaves come from Panama (published by Londoño et al., 2018), Connecticut, and Puerto Rico</td>
</tr>
<tr>
<td>Temperature</td>
<td>6</td>
<td>2.2</td>
<td>Theoretical calculations and growth-chamber experiment</td>
</tr>
<tr>
<td>Photorespiration</td>
<td>n/a</td>
<td>2.3</td>
<td>Theoretical calculations</td>
</tr>
<tr>
<td>Canopy position</td>
<td>6</td>
<td>2.4</td>
<td>Leaves come from Panama and Connecticut</td>
</tr>
</tbody>
</table>

n/a: not applicable
The volume of air follows ideal gas principles: $P = \frac{nRT}{V}$ where P is atmospheric pressure, which we fix at 1 atmosphere, and STP is the molar gas constant (8.31446 × 10$^{-3}$ kJ K$^{-1}$ mol$^{-1}$) and T is leaf temperature (K). Marrero and Mason (1972) describe the sensitivity of water vapor diffusivity to temperature as $d = 1.87 × 10^{-10} \left(\frac{T^{2.072}}{P} \right)$, where P is atmospheric pressure, which we fix at 1 atmosphere. Lastly, the temperature sensitivity of the molar volume of air follows ideal gas principles: $v = \frac{v_{STP} \left(\frac{T}{T_{STP}} \right) \left(\frac{P}{P_{STP}} \right)}{T_{STP}}$, where T_{STP} is 273.15 K, P_{STP} is 1 atmosphere, and v_{STP} is the air volume at T_{STP} and P_{STP} (0.022414 m3 mol$^{-1}$).

Using Eqs. (6)–(8), we can describe how, conceptually, the sensitivities of Γ^* and d/v to leaf temperature affect estimates of CO$_2$ from the Franks model. We apply these relationships to a suite of 409 fossil and extant leaves from 62 species of angiosperms, gymnosperms, and ferns. These data come from the current study (see Sect. 2.1 and 2.4) and Londoño et al. (2018), Kowalczyk et al. (2018), and Milligan et al. (2019).

To experimentally test more generally how the Franks model is influenced by temperature, we grew six species of plants inside two growth chambers with contrasting temperatures (Conviron E7/2; Winnipeg, Canada). Air temperature was 28 ± 0.5°C (1σ) and 20 ± 0.3°C during the day and 19 ± 0.7°C and 11 ± 1.1°C during the night. We note that the difference in leaf temperature was probably smaller than that in air temperature during the day (8°C; see earlier discussion). We held fixed the day length (17 h with a 30 min simulated dawn and dusk) and CO$_2$ concentration (500 ± 10 ppm). Light intensity at the heights at which we sampled leaves ranged from 100 to 400 µmol m$^{-2}$ s$^{-1}$. Humidity differed moderately between chambers (76.5 ± 1.8 % and 90.0 ± 3.6 %). To minimize any chamber effects, we alternated plants between chambers every 2 weeks.

Four of the species started as saplings purchased from commercial nurseries: bare-root, 30 cm tall saplings of Acer negundo and Carpinus caroliniana, 30 cm tall saplings of Ostrya virginiana with a soil ball, and bare-root, 10 cm tall saplings of Ilex opaca. We grew the other two species from seed: Betula lenta from a commercial source and Quercus rubra from a single tree on Wesleyan University’s campus. All seeds were soaked in water for 24 h and then cold-stratified in a refrigerator for 30 and 60 days, respectively.

All seeds and saplings grew in the same potting soil (Promix Bx with Mycorise; Premier Horticulture; Quakertown, Pennsylvania, USA) and fertilizer (Scotts all-purpose flower and vegetable fertilizer; Maryville, Ohio, USA). They were watered to field capacity every other day, and we
discarded any excess water passing through the pots. After 3 months of growth in the chambers, for each species–chamber pair we harvested the three newest fully expanded leaves whose buds developed during the experiment. In most cases, we harvested five plants per species–chamber pair; the one exception was *I. opaca*, for which we were limited to three plants in the warm treatment and two in the cool treatment.

We measured stomatal size and density on cleared leaves (using 50% household bleach) with transmitted-light microscopy. Whole-leaf δ\(^{13}\)C comes from the UC Davis Stable Isotope Facility and the Light Stable Isotope Mass Spec Lab at the University of Florida; the same leaves were measured for δ\(^{13}\)C and stomatal morphology. We used either a hole punch or razor to remove two adjacent sections of leaf tissue near the leaf centers, avoiding major veins. Because we used the same CO\(_2\) gas cylinder (δ\(^{13}\)C = −11.8‰) and laboratory space (δ\(^{13}\)C = −10.4‰) as Milligan et al. (2019), we used their two-end-member mixing model (1/CO\(_2\) vs. δ\(^{13}\)C; Keeling, 1958) to calculate the δ\(^{13}\)C of the chamber CO\(_2\) at 500 ppm (−10.6‰). We used the recommended values from Franks et al. (2014) for the physiological inputs \(A_0\) and \(g_{(c/0)/(c_{(max)})}\). Table S1 summarizes all of the inputs from this experiment needed to run the Franks model, along with the estimated CO\(_2\) concentrations. The standard errors for the inputs are based on plant means.

To test if δ\(^{13}\)C and stomatal morphology (stomatal density, stomatal pore length, and single guard cell width) differed between temperature treatments across species, we implemented a mixed model in R (R Core Team, 2016) using the lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) packages, with temperature and species as the two fixed factors. To test if there was a significant difference between CO\(_2\) estimates from the two temperature treatments, we ran a Kolmogorov–Smirnov (KS) test in R. For each species, we first estimated CO\(_2\) for each plant in the warm and cool treatments based on simulated inputs constrained by their means and variances. In the typical case with five plants per chamber, this produced five CO\(_2\) estimates for the warm chamber and the same for the cool chamber. A KS test was then used to test for a significant temperature effect. We repeated this procedure 10000 times, with 10000 associated KS tests. The fraction of tests with a \(p\) value < 0.05 was taken as the overall \(p\) value. An advantage of this approach is that it incorporates both within- and across-plant variation.

2.3 Photorespiration

\(c_i/c_a\) is estimated in the Franks model following Farquhar et al. (1982):

\[
\Delta_{\text{leaf}} = a + (b - a) \times \frac{c_i}{c_a},
\]

where \(a\) is the carbon isotope fractionation due to the diffusion of CO\(_2\) in air (4.4‰; Farquhar et al., 1982), \(b\) is the fractionation associated with RuBP carboxylase (30%ε; Roeske and O’Leary, 1984), and \(\Delta_{\text{leaf}}\) is the net fractionation between air and assimilated carbon ((δ\(^{13}\)C\(_{\text{air}}\) − δ\(^{13}\)C\(_{\text{leaf}}\))/(1 + δ\(^{13}\)C\(_{\text{leaf}}\)/1000)).

Equation (8) can be expanded to include other effects, including photorespiration (Farquhar et al., 1982):

\[
\Delta_{\text{leaf}} = a + (b - a) \times \frac{c_i}{c_a} - \frac{f}{c_a},
\]

where \(f\) is the carbon isotope fractionation due to photorespiration. Photorespiration occurs when the enzyme rubisco fixes O\(_2\), not CO\(_2\) (i.e., RuBP oxygenase). One product of photorespiration is CO\(_2\) (Jones, 1992), whose δ\(^{13}\)C is lower than the source substrate glycine. If this respired CO\(_2\) escapes to the atmosphere, the δ\(^{13}\)C of the leaf carbon becomes more positive. Thus, if \(c_i/c_a\) is calculated using Eq. (8), as is common practice, the calculation may be falsely low, leading to an underprediction of atmospheric CO\(_2\).

Measured values for \(f\) vary from ~9 to 15‰ (see compilation in Schubert and Jahren, 2018), which is in line with theoretical predictions (Tcherkez, 2006). At a 400 ppm atmospheric CO\(_2\) and \(f^*\) of 40 ppm, Eq. (9) implies that ~1% of \(\Delta_{\text{leaf}}\) is due to photorespiration, meaning that \(c_i/c_a\) should be ~0.04 higher relative to Eq. (8). Here, using the suite of fossil and extant leaves described in Sect. 2.2, we explore how the carbon isotopic fractionation associated with photorespiration affects CO\(_2\) estimates with the Franks model. Because \(c_i/c_a\) is present in both of the fundamental equations (Eqs. 2 and 3), we solve them iteratively until \(c_i/c_a\) converges.

2.4 Leaves that grow close to the forest floor

The composition of air close to the forest floor can differ considerably from the well-mixed atmosphere. Of relevance to the Franks model, soil respiration can lead to a locally higher CO\(_2\) concentration and lower δ\(^{13}\)C\(_{\text{air}}\) (Table 2). This effect is strongest at night, when the forest boundary layer is thickest (e.g., Munger and Hadley, 2017), but we focus here on daylight hours because that is when most plants take up CO\(_2\). In wet tropical forests, which can have very high soil respiration rates, CO\(_2\) during the day near the forest floor can be elevated by tens of parts per million, and the δ\(^{13}\)C\(_{\text{air}}\) can be 2–3‰ lower; in temperate forests, the deviations are smaller (Table 2). Above ~2 m, CO\(_2\) concentrations and air δ\(^{13}\)C during the daytime largely match the well-mixed atmosphere.

As a result, leaves that grow close to the forest floor may cause the Franks model to produce CO\(_2\) estimates higher than that of the mixed atmosphere for at least two reasons. First, the concentration of CO\(_2\) near the forest floor is elevated; that is, the model may correctly estimate a CO\(_2\) concentration that the user is not interested in. Second, because the δ\(^{13}\)C\(_{\text{air}}\) that a forest-floor plant experiences is lower than the global well-mixed value, if the user chooses the well-mixed value for model input (inferred, for example, from the
\[\delta^{13}C \text{ of marine carbonate; Tipple et al., 2010}, \] then \(c_i/c_a \) and thus atmospheric CO\(_2\) will be overestimated (see Eq. 2).

We sought to test how the Franks model is affected by the forest-floor microenvironment for five tropical angiosperm species and 15 temperate angiosperm and fern species. The tropical leaves were sampled at \(\sim 1\text{–}2\) m of height from Parque Nacional San Lorenzo, Panama. In contrast to the canopy dataset from San Lorenzo (Sect. 2.1), these CO\(_2\) estimates have not been previously reported. In the summer of 2015, seven fern species were sampled at \(\sim 0.5\) m of height from Connecticut College and Wesleyan University. Also, we used leaf vouchers from Royer et al. (2010), who sampled eight herbaceous angiosperm species at \(\sim 0.1\text{–}0.2\) m of height from Reed Gap, Connecticut. For all 20 species, stomatal and carbon isotopic measurements follow the methods described in Sect. 2.1. Table S1 contains all of the inputs needed to run the Franks model, along with the estimated CO\(_2\) concentrations.

We also investigated if we could include the forest-floor \(\delta^{13}C_{\text{air}} \) effect in our estimates of atmospheric CO\(_2\). We did not measure the CO\(_2\) concentration and \(\delta^{13}C_{\text{air}} \) around our plants, so we could not directly compare our values. But, if the only CO\(_2\) inputs close to the forest floor are from the soil and well-mixed atmosphere, then the system can be modeled as a two-end-member mixing model in which \(\delta^{13}C_{\text{air}} \) has a positive, linear relationship with \(1/\text{CO}_2 \) (Keeling, 1958). If the CO\(_2\) concentration and \(\delta^{13}C \) of both end-members are known, the forest-floor microenvironment should fall somewhere on the modeled line. Importantly, the Franks model provides a second constraint on the system. Here, \(\delta^{13}C_{\text{air}} \) has a negative, nonlinear relationship with \(1/\text{CO}_2 \) because \(\delta^{13}C_{\text{air}} \) is positively related to \(c_i/c_a \) and CO\(_2\). The Franks model thus provides a second calculation for the relationship between \(\delta^{13}C_{\text{air}} \) and estimated CO\(_2\) concentration. The intersection between the two curves should be the correct \(\delta^{13}C_{\text{air}} \) and CO\(_2\) concentration for the forest-floor microenvironment.

To estimate the soil CO\(_2\) end-member, we measured the \(\delta^{13}C \) of soil organic matter collected from the A horizons of 13 soil sites at San Lorenzo and of five each at Reed Gap and Connecticut College. For all soils, we assume a 5000 ppm CO\(_2\) concentration for a depth that is below the zone of CO\(_2\) diffusion from the atmosphere (~0.3 m; Cerling, 1999; Breecker et al., 2009). The true value for wet temperate and tropical forest soils may be somewhat less or substantially more than 5000 ppm (Medina et al., 1986; Cerling, 1999; Hirano et al., 2003; Hashimoto et al., 2004; Sotta et al., 2004). Because the mixing model uses \(1/\text{CO}_2 \), a much higher CO\(_2\) concentration (e.g., 10 000 ppm) has little impact on our results.

3 Results and discussion

3.1 General testing in living plants

Estimates of CO\(_2\) across the 40 tree species sampled in the field range from 275 to 850 ppm, with a mean of 478 ppm and median of 472 ppm (Fig. 2); two-thirds of the estimates (a close equivalent to ±1 standard deviation) range between 353 and 585 ppm. In 28 % of the tested species, the estimated CO\(_2\) concentrations overlap the target concentration (400 ppm) at 95 % confidence; for these species, the CO\(_2\) estimates do not differ significantly from the target. There are no strong differences across taxonomic orders or between leaves from tropical and temperate forests. The mean error rate across the estimates is 28 % (median 24 %), which is higher than estimates that include direct measurements of the physiological inputs \(A_0 \) and \(g_{c(\text{opt})}/g_{c(\text{max})} \) (mean 20 %; median 13 %; Fig. 1). Along similar lines, if the estimates presented in Fig. 1 are reestimated using the values for \(A_0 \) and \(g_{c(\text{opt})}/g_{c(\text{max})} \) recommended by Franks et al. (2014), the

Table 2. Deviations in the \(\delta^{13}C \) and concentration of CO\(_2\) close to a forest floor relative to well-mixed air above the canopy. All measurements were made close to midday.

<table>
<thead>
<tr>
<th>Study</th>
<th>(\delta^{13}C_{\text{air}}) relative to well-mixed air (‰)</th>
<th>CO(_2) relative to well-mixed air (ppm)</th>
<th>Height above forest floor (m)</th>
<th>Forest location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadmeadow et al. (1992)</td>
<td>−2</td>
<td>+20</td>
<td>0.15–1</td>
<td>Trinidad during dry season</td>
</tr>
<tr>
<td>Buchmann et al. (1997)</td>
<td>−2</td>
<td>+30</td>
<td>0.70–0.75</td>
<td>French Guiana during wet and dry seasons</td>
</tr>
<tr>
<td>Holtum and Winter (2001)</td>
<td>n/a</td>
<td>+50</td>
<td>0.10</td>
<td>Panama during wet and dry seasons</td>
</tr>
<tr>
<td>Lloyd et al. (1996)</td>
<td>−3</td>
<td>+70</td>
<td>1</td>
<td>Brazil (Amazon Basin)</td>
</tr>
<tr>
<td>Quay et al. (1989)</td>
<td>−3</td>
<td>+20</td>
<td>2</td>
<td>Brazil (Amazon Basin)</td>
</tr>
<tr>
<td>Sternberg et al. (1989)</td>
<td>−2</td>
<td>+25</td>
<td>1</td>
<td>Panama during wet and dry seasons</td>
</tr>
<tr>
<td>Temperate forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francey et al. (1985)</td>
<td>−1</td>
<td>+20</td>
<td>1</td>
<td>Tasmania</td>
</tr>
<tr>
<td>Munger and Hadley (2017)</td>
<td>n/a</td>
<td>+15</td>
<td>1</td>
<td>Massachusetts (Harvard Forest)</td>
</tr>
</tbody>
</table>

n/a: not applicable
Figure 2. Estimates of CO$_2$ based on canopy leaves from 40 tree species. Uncertainties in the estimates correspond to the 16th–84th percentile range. Vertical line is the correct concentration (400 ppm). On the left is an order-level vascular plant phylogeny (APW v.13; Stevens, 2001, onwards). The number of measured species is given in parentheses.
mean error rate increases to 37 % (median 33 %). If only the default values of A_0 are used, the median error rate is 27 %, and for only default values of $g_{c(op)}/g_{c(max)}$ it is 22 %.

These results indicate that CO$_2$ accuracy is generally improved when A_0 and/or $g_{c(op)}/g_{c(max)}$ are measured. These measurements require expensive gas-exchange equipment and are not always easy or practical to make. Moreover, A_0 and $g_{c(op)}/g_{c(max)}$ cannot be measured on fossils. Some gains in accuracy are possible by measuring A_0 and $g_{c(op)}/g_{c(max)}$ on extant relatives of the fossil species (e.g., the same genus). Absent of this, our analysis using the recommended mean values of Franks et al. (2014) indicates an error rate, on average, of approximately 28 %. This is comparable to or better than other leading paleo-CO$_2$ proxies (Franks et al., 2014).

One reliable way to improve accuracy is to estimate CO$_2$ with multiple species because the falsely high and falsely low estimates partly cancel each other out. The grand mean of estimates presented in Fig. 2 (478 ppm) is 20 % from the 400 ppm target, which is less than the 28 % mean error rate of individual estimates.

Dow et al. (2014) observed that $g_{c(op)}/g_{c(max)}$ inversely varies with CO$_2$ in Arabidopsis thaliana, but primarily at subambient concentrations (yellow triangles in Fig. 3). At elevated CO$_2$, $g_{c(op)}/g_{c(max)}$ is close to 0.2, which is the value recommended by Franks et al. (2014). Data from 11 species of angiosperms, conifers, and ferns at present-day (or near present-day) and elevated CO$_2$ concentrations support the view of a limited effect at high CO$_2$ (Fig. 3; Franks et al., 2014; Londoño et al., 2018; Milligan et al., 2019). More data at subambient CO$_2$ are needed, but for CO$_2$ concentrations similar to or higher than the present day, we see no strong reason to include a CO$_2$ sensitivity in $g_{c(op)}/g_{c(max)}$. The rather low values for Cedrus deodara and many of the tropical angiosperms (< 0.1) are likely due to stress imposed by their growth-chamber environment; these $g_{c(op)}/g_{c(max)}$ values are probably not representative of field-grown trees, which tend to be closer to 0.2 (Franks et al., 2014).

3.2 Temperature

The temperature sensitivities of the ratio of diffusivity of CO$_2$ in air to the molar volume of air (d/v) and the CO$_2$ compensation point in the absence of dark respiration (Γ^*) have little effect on estimated CO$_2$ in the Franks model (Fig. 4). Given that assimilation-weighted leaf temperature only varies about 7°C across plants today, the differences shown in Fig. 4, which are based on leaf temperatures of 25 and 15 °C, are likely a maximum effect. As such, we consider the use of a fixed leaf temperature (e.g., 25°C) in the model to be a defensible simplification.

Other inputs in the model may respond to temperature, though. In our growth-chamber experiments for which daytime air temperatures were 28 and 20°C, the effect on estimated CO$_2$ was mixed (Fig. 5). In five out of six species, estimated CO$_2$ was higher in the warm treatment, but for all species these differences were not statistically significant ($p > 0.05$ based on a KS test; see Methods). Incorporating the temperature sensitivities in d/v and Γ^* had little effect (“adj” estimates in Fig. 5), as expected from Fig. 4.

None of the measured inputs – stomatal density, stomatal pore length, single guard cell width, and leaf δ^{13}C – were significantly affected by temperature across all species ($p > 0.05$ for each of the four inputs based on a mixed model; see Sect. 2.2). These small differences probably cannot account for the differences in estimated CO$_2$ between temperatures. It is more likely that some of the inputs that we did not directly measure, such as assimilation rate (A_0), the $g_{c(op)}/g_{c(max)}$ ra-
tio, or mesophyll conductance (g_m), differ from the true mean value. In the cases for the five species for which estimated CO$_2$ is higher in the warm treatment, our mean A_0 for the warm plants must be falsely high, or $g_{c(op)}/g_{c(max)}$ or g_m is falsely low.

In summary, we see no strong reason to expand the parameterization of temperature in the model, though more growth-chamber experiments may be warranted. We note that in three out of the six species from the warm treatment, the estimated CO$_2$ cannot be distinguished from the 500 ppm target at 95 % confidence; for the cool treatment, this is true for four of the species. Also, the across-species means of estimated CO$_2$ for the warm and cool treatments are reasonably close to the target (590 and 502 ppm, respectively) and overall have a mean error rate of 25 %. This level of uncertainty is similar to our field estimates for which we did not measure A_0 or $g_{c(op)}/g_{c(max)}$ (28 %; see Fig. 2). This too provides support for our recommendation that it is not critical to include a broader treatment of temperature in the model.

3.3 Photorespiration

The theoretical effects of photorespiration do not strongly impact estimates of CO$_2$ in the Franks model. The average effect for our 409 extant and fossil leaves is to increase estimated CO$_2$ by 2.2 % plus 38 ppm (Fig. 6). At 1000 ppm, for example, estimates would increase by 60 ppm. This calculation assumes a photorespiration fractionation (f) of 9.1 ‰, which is the value estimated for Arabidopsis thaliana (Schubert and Jahren, 2018). If a fractionation towards the upper bound of published estimates is used instead (15 ‰), estimated CO$_2$ increases on average by 3.8 % plus 61 ppm.

Across this range in f, the associated uncertainty in estimated CO$_2$ is well within the method’s overall precision ($\sim +35/-25$ % at 95 % confidence; Franks et al., 2014). As such, CO$_2$ estimates made without these photorespiration effects (i.e., using Eq. 9 instead of Eq. 10) should be reliable, although some improvement is possible using Eq. 10 in cases in which f is accurately known.

We note that both f and Γ^* are also affected by atmospheric O$_2$ concentration. Because O$_2$ is directly responsible for photorespiration, f should scale with O$_2$ (or, more precisely, the O$_2$/CO$_2$ molar ratio). Unfortunately, this is poorly constrained (Beerling et al., 2002; Berner et al., 2003; Porter et al., 2017). In contrast, the theoretical effect of O$_2$ on Γ^* is known: it is linear with an approximate slope of 2 (Farquhar et al., 1982; see their Eq. B13). During the Phanerozoic, O$_2$ likely ranged from 10 % to 30 %, with lows during the early Paleozoic and early Triassic and highs during the Carboniferous to early Permian and Cretaceous (Berner, 2009; Glasspool and Scott, 2010; Arvidson et al., 2013; Mills et al., 2016; Lenton et al., 2018). Assuming a present-day Γ^* of 40 ppm (at 21 % O$_2$), Γ^* would be 60 ppm at 30 % O$_2$ and 20 ppm at 10 % O$_2$. Running the Franks model on our library of 409 extant and fossil leaves, we find little effect on estimated CO$_2$: estimates are 7.4 % higher on average at 30 % O$_2$ than at 10 % O$_2$ (see also McElwain et al., 2016).

3.4 Leaves that grow close to the forest floor

CO$_2$ estimates for tropical understory leaves from five species at San Lorenzo, Panama, are very high, ranging from 1903 to 18863 ppm (species mean 6837 ppm). For two of the species, Londoño et al. (2018) also analyzed canopy leaves from trees nearby, and these within-species comparisons highlight the vast discrepancy (Ocotea sp.: 541 vs. 5737 ppm; Tontelea sp.: 622 vs. 18863 ppm). The primary
difference in the inputs between the canopy and understory leaves is the \(\delta^{13}C \) of canopy leaves versus \(\delta^{13}C \) of the forest-floor microenvironment. Londoño et al. (2018) report a species mean \(\delta^{13}C \) of \(-30.0\)%e for the 21 canopy species versus \(-35.6\)%e for the five understory species. This difference leads to very different mean estimates of \(c_i/c_a \): 0.69 for canopy leaves versus a highly unrealistic (Diefendorf et al., 2010) 0.93 for understory leaves.

It is likely that the high CO\(_2\) estimates from understory leaves are mostly driven by falsely high \(\delta^{13}C \) inputs. Following the mixing model strategy outlined in Sect. 2.4 (and based on a soil organic matter \(\delta^{13}C \) of \(-28.2\)%e measured at San Lorenzo), we calculate a species mean \(\delta^{13}C \) of \(-16.7\)%e (mean of intersection points in Fig. 7). When this \(\delta^{13}C \) is used to estimate CO\(_2\) with the Franks model (instead of \(-8.5\)%e), the species mean drops to 699 ppm. This is somewhat higher than the species mean from canopy leaves in the same forest (563 ppm; red triangles in Fig. 2; Londoño et al., 2018).

Understory leaves from Connecticut temperate forests show similar but less dramatic patterns, which we attribute to a more open canopy with stronger atmospheric mixing. CO\(_2\) estimates for the 15 species range from 447 to 1567 ppm (mean 794 ppm). Our intersection method identifies a mean \(\delta^{13}C \) of \(-11.2\)%e for the Wesleyan and Connecticut College campuses (based on a soil \(\delta^{13}C \) of \(-27.6\)%e measured at Connecticut College) and \(-10.3\)%e for Reed Gap (soil \(\delta^{13}C = \sim -26.4\)%e). Using these adjusted \(\delta^{13}C \) inputs, the species mean of estimated CO\(_2\) drops to 566 ppm, which is somewhat higher than the species mean from canopy leaves in the same areas (449 ppm; blue circles in Fig. 2).

We acknowledge that this analysis is too simple. First, we did not measure the understory CO\(_2\) concentration and \(\delta^{13}C \) (this would require repeated measurements during different daytime hours over a growing season to calculate a time-integrated value); instead, we assumed a simple two-end-member mixing model between the soil and well-mixed atmosphere. Second, other factors probably contribute to the differences in estimated CO\(_2\) between canopy and understory leaves. Our predicted \(\delta^{13}C \) values are too low (\sim 8%e and 2%e lower than the well-mixed atmosphere for the tropical and temperate forests) and our estimated CO\(_2\) too high (\sim 100 ppm higher than that from canopy leaves). In the lowermost 1–2 m of the canopy, previous work suggests up to a \(-3\)%e and \(+70\) ppm deviation in tropical forests and \(-1\)%e / \(+20\) ppm in temperate forests (Table 1). One input that could help to resolve this discrepancy is the assimilation rate (\(A_0 \)). We assumed a fixed \(A_0 \) of 12 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) for all leaves, regardless of canopy position. Shade leaves often have lower assimilation rates than sun leaves (Givnish, 1988). Substituting lower \(A_0 \) values for shade leaves would lower estimated CO\(_2\) roughly in proportion (Eqs. 2–3). Using lower \(A_0 \) values for shade leaves in the model is appropriate, but determining the best value is difficult. Typical \(A_0 \) values for leaves growing at the top of the canopy in full sun are far more consistent because photosynthesis in these leaves is usually at its maximum capacity (saturated at full sunlight) for the prevailing atmospheric CO\(_2\) concentration. Because the degree of shadiness near the forest floor is highly variable, photosynthesis (\(A_0 \)) in these leaves will be acclimated to some fraction of the full-sun maximum in a sun-exposed leaf, but careful thought must go into determining what this fraction is.

We note that our mixing model strategy cannot be applied to fossils because the global atmospheric CO\(_2\) concentration is needed (one end point for dashed line in Fig. 7). Instead, our motivation for the analysis is to demonstrate that (1) leaves growing in the lowermost 2 m of the canopy should be considered with caution in the context of the Franks model, and (2) the failure of the model is due to faulty inputs (mostly \(\delta^{13}C \)), not the model itself.

In most fossil leaf deposits, shade morphotypes are comparatively rare (e.g., Kürschner, 1997; Wang et al., 2018) because – relative to sun leaves – they are less durable, do not travel as far by wind, and are produced at a slower rate (Dilcher, 1973; Roth and Dilcher, 1978; Spicer, 1980; Ferguson, 1985; Burnham et al., 1992). Our recommendation is to exclude such leaves. There are several ways to differentiate sun vs. shade morphotypes: overall shape (Talbert and Holch, 1957; Givnish, 1978; Kürschner, 1997; Sack et al., 2006), shape of epidermal cells (larger and with a more undulated outline in shade leaves; Kürschner, 1997; Dunn et al., 2015), vein density (lower in shade leaves; Uhl and Mos-
brugger, 1999; Sack and Scoffoni, 2013; Crifò et al., 2014; Londoño et al., 2018), and range in δ13Cleaf (high when both sun and shade leaves are present, for example in our study; Graham et al., 2014). Not all shade leaves grow within 2 m of the forest floor, but excluding all such leaves would eliminate the forest-floor bias.

4 Conclusions

The Franks model is reasonably accurate (~28% error rate) even when the physiological inputs A0 (assimilation rate at a known CO2 concentration) and g_{c(max)} (ratio of operational to maximum leaf conductance to CO2) are inferred, not measured. Accuracy does improve when these inputs are measured (~20% error rate), but such measurements are not possible with fossils and may not always be feasible with the nearest living relatives. A 28% error rate is broadly in line with (or better than) other leading paleo-CO2 proxies.

Most of the possible confounding factors that we investigated appear minor. The temperature sensitivities of d/v (related to gas diffusion) and I∗ (CO2 compensation point in the absence of dark respiration) have a negligible impact on estimated CO2. Our temperature experiments in growth chambers point to larger differences in some species, which must be related to incorrect values for inputs that were not directly measured, such as A0, g_{c(op)} / g_{c(max)}, and g_m (mesophyll conductance). Overall, though, we find that the differences in estimated CO2 imparted by temperature are generally smaller than the overall 28% error rate.

Incorporating the covariance between CO2 concentration and photorespiration leads to only small changes in estimated CO2. O3 concentration affects photorespiration and may thus confound CO2 estimates from the Franks model, but presently the effect is poorly quantified. The effect of O3 on I∗ is better known and imparts only small changes in estimated CO2 across a feasible range in Phanerozoic O2 of 10%–30%.

Leaves from the lowermost 1–2 m of the canopy experience slightly elevated CO2 concentrations and lower air δ13C during the daytime relative to the well-mixed atmosphere. We find that if we use the well-mixed air δ13C to estimate CO2 from leaves that grew near the forest floor, estimates are too high, especially in dense tropical canopies. When we use a two-end-member mixing model to calculate the correct local air δ13C, the falsely high CO2 estimates largely disappear. For fossil applications, shade leaves from the bottom of the canopy should be avoided. Shade leaves are typically rare in the fossil record (relative to sun leaves) and can be identified by their overall shape, the shape of their epidermal cells, their low leaf δ13C, and their low vein density.

Conceptually, the Franks model holds considerable promise for quantifying paleo-CO2: it is mechanistically grounded and can be applied to most fossil leaves. Our tests of the model’s accuracy and sensitivity to temperature and photorespiration largely uphold this promise.

Data availability. All new data are presented in the Supplement.

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/cp-15-795-2019-supplement.

Author contributions. DR, KM, MM, and LL designed and conducted the experiments; all authors interpreted the data; DR prepared the paper with contributions from all coauthors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Glenn Dreyer and Peter Siver for logistical support at Connecticut College. Shuo Wang for lab assistance, and Camilla Crifò and Andres Baresh for collecting the tropical samples. Support for LL was provided by the Smithsonian Tropical Research Institute, the Mark Tupper Fellowship, the National Science Foundation (grants EAR 0824299 and OISE, EAR, DRL 996884), the Anders Foundation, and Gregory D. and Jennifer Walston Johnson and the 1923 Fund.

Review statement. This paper was edited by Ed Brook and reviewed by Jennifer Mc Elwain and one anonymous referee.

References

Tesfamichael, T., Jacobs, B., Tabor, N., Michel, L., Currano, E., Fe-seha, M., Barclay, R., Kappelman, J., and Schmitz, M.: Setting the issue of “decoupling” between atmospheric carbon dioxide and global temperature: [CO₂] atm reconstructions across the...

