Articles | Volume 16, issue 2
https://doi.org/10.5194/cp-16-783-2020
https://doi.org/10.5194/cp-16-783-2020
Research article
 | 
29 Apr 2020
Research article |  | 29 Apr 2020

A 424-year tree-ring-based Palmer Drought Severity Index reconstruction of Cedrus deodara D. Don from the Hindu Kush range of Pakistan: linkages to ocean oscillations

Sarir Ahmad, Liangjun Zhu, Sumaira Yasmeen, Yuandong Zhang, Zongshan Li, Sami Ullah, Shijie Han, and Xiaochun Wang

Related authors

A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021,https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Overcoming model instability in tree-ring-based temperature reconstructions using a multi-species method: A case study from the Changbai Mountains, northeastern China
Liangjun Zhu, Shuguang Liu, Haifeng Zhu, David J. Cooper, Danyang Yuan, Yu Zhu, Zongshan Li, Yuandong Zhang, Hanxue Liang, Xu Zhang, Wenqi Song, and Xiaochun Wang
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-2,https://doi.org/10.5194/cp-2021-2, 2021
Manuscript not accepted for further review
Short summary
Response of Pinus sylvestris var. mongolica to water change and drought history reconstruction in the past 260 years, northeast China
Liangjun Zhu, Qichao Yao, David J. Cooper, Shijie Han, and Xiaochun Wang
Clim. Past, 14, 1213–1228, https://doi.org/10.5194/cp-14-1213-2018,https://doi.org/10.5194/cp-14-1213-2018, 2018
Short summary
A 414-year tree-ring-based April–July minimum temperature reconstruction and its implications for the extreme climate events, northeast China
Shanna Lyu, Zongshan Li, Yuandong Zhang, and Xiaochun Wang
Clim. Past, 12, 1879–1888, https://doi.org/10.5194/cp-12-1879-2016,https://doi.org/10.5194/cp-12-1879-2016, 2016
Short summary
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016,https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Centennial-Decadal
Pre-industrial temperature variability on the Swiss Plateau derived from the instrumental daily series of Bern and Zurich
Yuri Brugnara, Chantal Hari, Lucas Pfister, Veronika Valler, and Stefan Brönnimann
Clim. Past, 18, 2357–2379, https://doi.org/10.5194/cp-18-2357-2022,https://doi.org/10.5194/cp-18-2357-2022, 2022
Short summary
Is it possible to estimate aerosol optical depth from historic colour paintings?
Christian von Savigny, Anna Lange, Anne Hemkendreis, Christoph G. Hoffmann, and Alexei Rozanov
Clim. Past, 18, 2345–2356, https://doi.org/10.5194/cp-18-2345-2022,https://doi.org/10.5194/cp-18-2345-2022, 2022
Short summary
Meteorological and climatological triggers of notable past and present bark beetle outbreaks in the Czech Republic
Rudolf Brázdil, Petr Zahradník, Péter Szabó, Kateřina Chromá, Petr Dobrovolný, Lukáš Dolák, Miroslav Trnka, Jan Řehoř, and Silvie Suchánková
Clim. Past, 18, 2155–2180, https://doi.org/10.5194/cp-18-2155-2022,https://doi.org/10.5194/cp-18-2155-2022, 2022
Short summary
Quantifying and reducing researcher subjectivity in the generation of climate indices from documentary sources
George C. D. Adamson, David J. Nash, and Stefan W. Grab
Clim. Past, 18, 1071–1081, https://doi.org/10.5194/cp-18-1071-2022,https://doi.org/10.5194/cp-18-1071-2022, 2022
Short summary
Documentary-based climate reconstructions in the Czech Lands 1501–2020 CE and their European context
Rudolf Brázdil, Petr Dobrovolný, Jiří Mikšovský, Petr Pišoft, Miroslav Trnka, Martin Možný, and Jan Balek
Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022,https://doi.org/10.5194/cp-18-935-2022, 2022
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, 2016. 
Ahmad, S., Hussain, Z., Qureshi, A. S., Majeed, R., and Saleem, M.: Drought mitigation in Pakistan: current status and options for future strategies, Working Paper 85, International Water Management Institute, Colombo, Sri Lanka, 2004. 
Ahmed, M., Wahab, M., and Khan, N.: Dendroclimatic investigation in Pakistan using Picea smithiana (Wall) Boiss – Preliminary results, Pak. J. Bot., 41, 2427–2435, 2009. 
Ahmed, M., Wahab, M., Khan, N., Palmer, J., Nazim, K., Khan, M. U., and Siddiqui, M. F.: Some preliminary results of climatic studies based on two pine tree species of Himalayan areas of Pakistan, Pak. J. Bot., 42, 731–738, 2010a. 
Ahmed, M., Khan, N., and Wahab, M.: Climate response function analysis of Abies pindrow (Royle) Spach. Preliminary results, Pak. J. Bot., 42, 165–171, 2010b. 
Download
Short summary
This study provides the opportunity to extend climatic records to preindustrial periods in northern Pakistan. The reconstructed March–August PDSIs for the past 424 years, going back to 1593 CE, enable scientists to know how these areas were prone to climatic extremes in the past. The instrumental data are limited in Pakistan; however, the Cedrus deodara tree that preserves physical characteristics of past climatic variabilities can provide insight into the trend of climatic changes.