New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr

L. Loulergue1, F. Parrenin1, T. Blunier2, J.-M. Barnola1, R. Spahni2, A. Schilt2, G. Raisbeck3, and J. Chappellaz1

1Laboratoire de Glaciologie et de Géophysique de l’Environnement (LGGE), CNRS, Université Joseph Fourier – Grenoble, BP96 38402 Saint Martin d’Heres Cedex, France
2Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
3Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), IN2P3-CNRS-Université de Paris-Sud, Bat 108, 91405 Orsay Cedex, France

Received: 14 February 2007 – Published in Clim. Past Discuss.: 5 March 2007
Revised: 25 July 2007 – Accepted: 15 August 2007 – Published: 28 August 2007

Abstract. Gas is trapped in polar ice sheets at ∼50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.

1 Introduction

Gas records in ice cores allow one to reconstruct changes in the atmospheric composition (e.g. Siegenthaler et al., 2005; Spahni et al., 2005; Flückiger et al., 2002). They also allow to compare between Greenland and Antarctic ice records, when used as correlative tools (Bender et al., 1994; Blunier et al., 1997, 1998; Blunier and Brook, 2001; Steig et al., 2002; Landais et al., 2004). Lastly, their phase relationship with ice records provides a constraint on the mechanisms responsible for atmospheric composition changes (e.g. Monnin et al., 2001). The second and third application of gas records critically depends on uncertainties in the difference between the age of the gas and the age of the surrounding ice matrix (Δage) (Schwander et al., 1997).

Different methods are used to determine the ice/gas difference (as a function of age at the same depth – hereafter Δage, or as a function of depth at the same age – hereafter Δdepth) in ice cores: using a firn densification model which simulates gas trapping as a function of firn physical properties and climatic conditions (e.g. Arnaud et al., 2000), comparing a temperature signal recorded both in the ice matrix and in the gas phase (e.g. Severinghaus et al., 1998; Cail- lon et al., 2001), or taking δ15N of N2 as a proxy for the Lock-In Depth (LID) where gas diffusion ceases (e.g. Goujon et al., 2003; Sowers et al., 1992). The firm densification model requires specific inputs to compute firn density and thus gas trapping, such as the ice chronology and past variations of surface temperature and accumulation rate at the site of deposition. The most recent versions of these models include heat diffusion in firn and its effect on firn sintering. They are tested against present-day density and temperature profiles measured at different sites of Antarctica and
Greenland. For the past, usually no present-day analogue exists in terms of temperature and accumulation conditions. Therefore the model output can only be tested against other methods to determine Δage, when available. This is the case in Greenland where Δage can also be determined accurately in the past, thanks to the abrupt Greenland surface warming and cooling inducing a temperature gradient in the firm column. This temperature gradient causes isotopically heavier molecules to migrate towards the cold end (Séveringhaus et al., 1998). As the isotopic ratios of atmospheric nitrogen and argon are constant at millennial time scale in the atmosphere, their anomalies set the starting point of surface temperature changes in the gas record. With the temperature variation being recorded both in the ice and gas isotopic compositions, Δdepth is obtained. With an underlying timescale it can be transferred into a Δage. Unfortunately, in Antarctica, thermal diffusion produces isotope anomalies usually too small to be detected. In addition, the lower accumulation rate compared to Greenland results in larger Δage accompanied by more uncertain Δage calculations.

The uncertainty of Δage estimates in Antarctica is critical regarding the question of leads and lags between temperature and greenhouse gases variations in the past, which constrain the mechanisms responsible for these changes. At the onset of the last deglaciation (Termination I), based on a firm densification model Monnin et al. (2001) found a lag of 800±600 yr of CO$_2$ versus EDC temperature. Using the Siple Dome ice core and a firn densification model, Ahn et al. (2004) inferred a smaller lag of 210 to 330 yr. With the Byrd ice core, Neftel et al. (1988) also inferred a lag of 700±500 yr. Fischer et al. (1999) suggested an average lag of CO$_2$ over Vostok surface temperature of 600±400 yr over the last three Terminations, again using a firn densification model. Lastly, using trends in the 36Ar/40Ar isotopic ratio during Termination III, a lag of CO$_2$ on the Vostok warming during the entire deglaciation was found, with a value of 800±200 yr (Caillon et al., 2003). Better estimates of the Δage are clearly required to ascertain these estimated lags. Some of them result from densification models runs under conditions without present-day analogues.

One way to improve the accuracy of Δage estimates in Antarctica is to rely on stratigraphic markers recorded both in the ice matrix and in the trapped gas in two ice cores. This allows the correlation of the ice records in addition to the gas correlation, and thus an evaluation of Δage as a function of time. The 10Be anomaly (Raisbeck et al., 2002) provides such a marker in the ice. It is observed as a highly structured peak believed to be due to a low geomagnetic field associated with the Laschamp Event (Mazaud et al., 1994), centered at 40.4±2 kyr BP (Guillou et al., 2004). Yiou et al. (1997) and Raisbeck et al. (2002) showed that this 10Be peak is contemporaneous with the Dansgaard-Oeschger event (DO) #10.

Here we present new CH$_4$ data obtained on the EDC ice core (75°S, 123°E, 3233 m a.s.l., 25 kg m$^{-2}$ yr$^{-1}$) over the last 55 kyr BP (before AD 1950), that complement recently published CH$_4$ data along the EPICA Dronning Maud Land (EDML) ice core (75°S, 0°E, 2892 m a.s.l., 64 kg m$^{-2}$ yr$^{-1}$) (EPICA Community Members, 2006) and a stack of Greenland CH$_4$ records (Blunier et al., 2007). We then evaluate different accumulation and temperature scenarios against the objective that the Δage at EDC and EDML obtained by the densification model should produce 1) two consistent gas age scales at EDC and EDML; and 2) a North-South synchronization compatible with the one obtained from the 10Be peak during the Laschamp event.

2 Data and models used

2.1 Ice chronologies

When evaluating Δage and Δdepth with a firn densification model, a chronology for the ice has to be imposed.

For the NorthGRIP core, we use the GICC05 chronology obtained by annual layer counting from 0 to 42 kyr BP (Andersen et al., 2006; Rasmussen et al., 2006; Svensson et al., 2006; Vinther et al., 2006). The GICC05 age at the location of the 10Be peak is 41.2±1.6 kyr BP, and matches recent independent estimates within a few centuries (Svensson et al., 2006). Note that the uncertainty on the time spent between two nearby depth levels is smaller than the error on the absolute ages, the latter being cumulative with depth.

The new EDC ice chronology (hereafter referred to as EDC3, Parrenin et al., 2007a) is based on a relatively simple ice flow model applicable to ice domes. Several control age windows are used (from absolutely dated horizons and from comparison with other paleoclimate records) to constrain the free parameters of the model via an inverse method (Parrenin et al., 2001). For the last 50 kyr, EDC3 is matched onto GICC05 (Parrenin et al., 2007a) at several tie points: during the last 6 kyr (by 10Be-10Be synchronization), during the last deglaciation (by methane-isotope synchronization) and during the Laschamp event (by 10Be-10Be synchronization).

The corresponding chronology for EDML (hereafter EDML1, Ruth et al., 2007) has been derived by synchronizing the EDML and EDC ice cores using volcanic horizons and dust peaks. The tie points are based on continuous sulphate, electrolytic conductivity, dielectric profiling, particulate dust and Ca$^{2+}$ data available for both cores (Sverri et al., 2007). Due to common changes in the Patagonian dust source strength and the hemispheric significance of major volcanic eruptions, this procedure is justified. For the last 75 kyr (the period of interest in this study), the synchronization is mainly based on unambiguous volcanic markers recorded in the sulphate parameter, providing a synchronization to better than ±100 years (on average ±35 years, Ruth et al., 2007).
2.2 Temperature and accumulation rate parameterizations

\[T = T^0 + \alpha \Delta \delta D_{\text{corr}} \]
\[A = A^0 \exp(\beta \Delta \delta D_{\text{smo}}) \]

where \(A^0 \) and \(T^0 \) are surface accumulation rate and temperature for the present. \(\Delta \delta D_{\text{corr}} \) corresponds to the present-day value \(\delta D_0 \) isotope corrected for the variations in temperature and isotope at the source of the air masses (Parrenin et al., 2007). The latter is determined through isotopic reconstructions of benthic foraminifera (Bintanja et al., 2005). \(\Delta \delta D_{\text{smo}} \) is a 50-yr running average of \(\Delta \delta D_{\text{corr}} \) (to remove the noise of water isotopic ratios unrelated with accumulation rate changes). \(\alpha \) represents the spatial slope of the present-day isotopic thermometer and \(\beta \) represents the glacial-interglacial amplitude of the accumulation rate change. The \(\beta \) value is estimated at 0.0157 for EDC (Parrenin et al., 2007) and 0.045 for EDML (EPICA Community Members, 2006). This correction factor will be described and used later on in the manuscript.

At EDML, only \(\delta^{18} \text{O} \) of ice was measured and a synthetic \(\delta D \) record is obtained following:

\[\delta D = 8 \cdot \delta^{18} \text{O} + 10 \]

The present-day isotopic content, temperature and accumulation rates are respectively \(\delta D_0 = -396.5\%e \), \(T^0 = 217.5 \) K, \(A^0 = 2.84 \text{ cm-IE/yr} \) (cm ice equivalent per year) for EDC (Parrenin et al., 2007) and \(\delta D_0 = -351.22\%e \), \(T^0 = 228.65 \) K, \(A^0 = 6.4 \text{ cm-IE/yr} \) for EDML (EPICA Community Members, 2006).

Furthermore, a positive correction was applied to the EDC accumulation rate during the early Holocene, in order to match EDC3 onto GICC05 during the last deglaciation (see Parrenin et al., 2007, for more details).

The average glacial accumulation rate at EDML drill site calculated with Eq. (2) is about 2.9 cm-IE/year (EPICA Community Members, 2006), a value not far from the present one for Dome C (2.84 cm-IE/year) (Parrenin et al., 2007).

2.3 Methane records

We use CH\(_4\) records from EDC and EDML back to 55 kyr BP (Fig. 1) (EPICA Community Members, 2006). For EDC, the resolution of the existing methane data (Spahni et al., 2005;
The 10Be record at NorthGRIP is not completed yet. Therefore the position of the 10Be sub-peaks at NorthGRIP is based on a GRIP-NorthGRIP volcanic synchronization (Rasmussen et al., 2007). The uncertainty associated with this GRIP-NorthGRIP synchronization is small and neglected here.

Measurements of the 10Be peak are not yet available for the EDML ice core. Here we use the EDC-EDML volcanic synchronization (Severi et al., 2007) to determine its probable location in the core. The estimated depths of the two 10Be sub-peaks in the EDML core are shown in Table 1. The uncertainty on this synchronisation is small and estimated to be respectively ±0.23 m and ±0.35 m at EDML (Ruth et al., 2007).

2.5 Firn densification modelling

In order to determine Δage and Δdepth, different firn densification models have been developed previously. The first empirical steady state firn densification model based on ice deformation studies was developed by Herron and Langway (1980). This model was then improved by Pimienta (1987) (hereafter referred to as Pimienta-Barnola model) who explicitly took into account the pressure in the physical formulation. This model was applied for past climatic conditions at Vostok by Barnola et al. (1991). Schwander et al. (1997) further incorporated the heat transfer in a similar model. Heat transfer consists of diffusion and advection of temperature in the firm, and leads under present day conditions to an average temperature at the close-off depth slightly warmer than at the surface. Note that the same model is used in Blunier et al. (2007). Arnaud et al. (2000) then developed a more advanced densification model which considers two densification stages: pure sliding of snow grains for density lower than \sim0.55 g/cm3, and pure deformation of grains for density higher than \sim0.55 g/cm3. Goujon et al. (2003) then incorporated the heat transfer into this model. Very recently, Salamatin et al. (2007) proposed a model similar to the Arnaud model but considers both densification processes (sliding and deformation) simultaneously from the surface down to the close-off depth. Here we use the Goujon/Arnaud firm densification model (Goujon et al., 2003).

3 Empirical constraints on EDC and EDML Δages

Two types of empirical constraints on the EDC and EDML Δages are used. The first is based on EDC-EDML ice (sulphate) and gas (methane) synchronization during the last glacial period (Sect. 3.1). The second involves their synchronisation to NorthGRIP during the Laschamp event (Sect. 3.2).

3.1 EDC-EDML CH$_4$ synchronisation

As the ice of the two EPICA ice cores is well synchronized via volcanic horizons (±35 years, Severi et al., 2007; Ruth et al., 2007), a correct estimate of Δage/Δdepth at both sites should lead to synchronised CH$_4$ records in the gas phase. We use the sharp methane transitions to define match points between the two cores, taken at middle slope of each CH$_4$ sharp increase and decrease (Table 2). The comparison of the EDML and EDC gas ages for these events allows evaluation of the accuracy of the two modelled Δages and Δdepths.

Note that contrary to the information inferred by comparison to NorthGRIP during the Laschamp event (see next section), this constraint is only relative. Namely, it cannot provide independent validation on the absolute numbers of Δage, because systematic errors in both cores could lead to an incidental agreement of their gas timescales. The accumulation rate being more than twice as large at EDML than at EDC, its Δage is smaller and better constrained. Consequently, the EDML-EDC methane synchronization brings more constraints on the EDC Δage.

In the following, this empirical constraint will be referred to as the EDC-EDML constraint.

3.2 Δage and Δdepth constraints during the Laschamp event

Δage and Δdepth at the depth of the 10Be peak in the two EPICA cores is estimated by linking both their ice
Table 2. Depth of the methane tie points for the EDML-EDC gas synchronisation. Tie points are located at the middle of each sharp transition. The specified uncertainty (2σ) on the match has been determined as a function of depth, and then translated to ages using the EDC3 and EDML1 chronologies.

<table>
<thead>
<tr>
<th>Events</th>
<th>EDML depth (m)</th>
<th>CH4 (ppbv)</th>
<th>EDC depth (m)</th>
<th>CH4 (ppbv)</th>
<th>Uncertainties on the synchronisation EDML-EDC (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st transition (PB_YD)</td>
<td>717.6</td>
<td>583.6</td>
<td>418.2</td>
<td>583.0</td>
<td>124.6</td>
</tr>
<tr>
<td>2nd transition (YD_BO)</td>
<td>766.4</td>
<td>556.3</td>
<td>476.1</td>
<td>526.2</td>
<td>172.7</td>
</tr>
<tr>
<td>3th transition (BO_LGM)</td>
<td>830.2</td>
<td>532.3</td>
<td>532.6</td>
<td>321.3</td>
<td></td>
</tr>
<tr>
<td>DO2 end</td>
<td>1032.9</td>
<td>369.7</td>
<td>579.9</td>
<td>373.9</td>
<td>98.4</td>
</tr>
<tr>
<td>DO2 onset</td>
<td>1072.9</td>
<td>375.7</td>
<td>599.9</td>
<td>380.9</td>
<td>127.3</td>
</tr>
<tr>
<td>DO3 end</td>
<td>1148.0</td>
<td>405.0</td>
<td>635.4</td>
<td>404.0</td>
<td>141.1</td>
</tr>
<tr>
<td>DO3 onset</td>
<td>1155.1</td>
<td>390.9</td>
<td>639.1</td>
<td>401.0</td>
<td>127.3</td>
</tr>
<tr>
<td>DO4 end</td>
<td>1162.7</td>
<td>396.7</td>
<td>645.9</td>
<td>411.0</td>
<td>170.1</td>
</tr>
<tr>
<td>DO4 onset</td>
<td>1174.2</td>
<td>405.7</td>
<td>651.9</td>
<td>403.7</td>
<td>56.7</td>
</tr>
<tr>
<td>DO5 end</td>
<td>1224.0</td>
<td>434.5</td>
<td>681.6</td>
<td>429.8</td>
<td>196.7</td>
</tr>
<tr>
<td>DO5 onset</td>
<td>1233.7</td>
<td>437.7</td>
<td>688.1</td>
<td>438.4</td>
<td>199.7</td>
</tr>
<tr>
<td>DO6 end</td>
<td>1248.6</td>
<td>454.3</td>
<td>697.5</td>
<td>447.5</td>
<td>343.2</td>
</tr>
<tr>
<td>DO6 onset</td>
<td>1261.1</td>
<td>454.5</td>
<td>702.1</td>
<td>450.7</td>
<td>170.5</td>
</tr>
<tr>
<td>DO7 end</td>
<td>1272.9</td>
<td>476.8</td>
<td>712.5</td>
<td>473.1</td>
<td>268.0</td>
</tr>
<tr>
<td>DO7 onset</td>
<td>1286.4</td>
<td>471.7</td>
<td>719.7</td>
<td>472.2</td>
<td>98.0</td>
</tr>
<tr>
<td>DO8 end</td>
<td>1308.5</td>
<td>484.9</td>
<td>732.0</td>
<td>488.4</td>
<td>146.4</td>
</tr>
<tr>
<td>DO8 onset</td>
<td>1338.6</td>
<td>484.3</td>
<td>751.3</td>
<td>490.7</td>
<td>271.0</td>
</tr>
<tr>
<td>DO9 peak</td>
<td>1374.6</td>
<td>424.5</td>
<td>774.7</td>
<td>446.7</td>
<td>117.6</td>
</tr>
<tr>
<td>DO10 end</td>
<td>1391.4</td>
<td>442.9</td>
<td>784.1</td>
<td>443.4</td>
<td>183.6</td>
</tr>
<tr>
<td>DO10 onset</td>
<td>1404.6</td>
<td>440.5</td>
<td>790.6</td>
<td>439.8</td>
<td>183.6</td>
</tr>
<tr>
<td>DO11 end</td>
<td>1416.0</td>
<td>438.1</td>
<td>801.5</td>
<td>456.9</td>
<td>75.4</td>
</tr>
<tr>
<td>DO11 onset</td>
<td>1435.8</td>
<td>447.1</td>
<td>810.1</td>
<td>445.2</td>
<td>223.0</td>
</tr>
<tr>
<td>DO12 end</td>
<td>1452.9</td>
<td>448.9</td>
<td>820.4</td>
<td>453.5</td>
<td>223.0</td>
</tr>
<tr>
<td>DO12 onset</td>
<td>1491.3</td>
<td>458.5</td>
<td>848.1</td>
<td>465.9</td>
<td>330.0</td>
</tr>
</tbody>
</table>

and gas signals to NorthGRIP. The ice link is obtained by 10Be-10Be synchronization for both 10Be sub-peaks during the Laschamp event. The gas link is obtained by matching the EPICA CH4 records to the NorthGRIP isotopic record, assuming that these two records are synchronous during the rapid DO transitions (Huber et al., 2006; Flückiger et al., 2004).

3.2.1 The Δage method

The method is illustrated in Figs. 2, 3a for EDC and 3b for EDML. One of the 10Be sub-peaks is found at the ice depths DC-d1 at EDC and NG-d1 at NorthGRIP. The corresponding GICC05 age is a1. The age of the methane at the same EDC depth DC-d1 is younger than the age a1 with a difference of Δage. We synchronise this methane event with its concomitant NorthGRIP isotope event, being found shallower than the 10Be sub-peak at a depth NG-d2 and with a GICC05 age a2. Therefore, the age difference a1 - a2 is an indirect measurement of the Δage at the EDC depth DC-d1.

At EDC, at the depth of the 10Be peak, one finds DO #8 in the gas phase. At EDML, one finds DO #9 due to the smaller Δage.

The overall uncertainty of this Δage corresponds to the square root of the sum of the squares of the uncertainties on:

1. the 10Be NorthGRIP-EDC synchronisation;
2. the isotope-methane NorthGRIP-EDC synchronisation;
3. the GICC05 age difference a1 - a2, that is to say the number of uncertain annual layers between the NG-d1 and NG-d2 depths (which is much smaller than the uncertainty on the absolute age at these depths). Consequently, the precision of our Δage estimate is directly dependent on the precision of the GICC05 age scale.
4. the uncertainties on the linear interpolation between NorthGRIP and EDC on the 10Be synchronisation

EDC Δage with this method is found to be 3960±290 yr and 4040±290 yr for the two EDC 10Be sub-peaks (see Table 1.
Top panel: Δage method. The green arrow represents the ^{10}Be-^{10}Be tie point and the blue arrow corresponds to the methane/NorthGRIP (NG)-isotope stratigraphic link, assuming that these two records are synchronous during the rapid DO transitions (Huber et al., 2006).

Bottom panel: Δdepth method. The green arrow represents the ^{10}Be-^{10}Be tie point and the red arrow corresponds to the methane/NorthGRIP-isotope stratigraphic link, assuming that these two records are synchronous during the rapid DO transitions (Huber et al., 2006).

The same procedure is applied for EDML, adding the uncertainty due to the EDML-EDC synchronization through volcanic horizons. EDML Δage is found to be 1080±240 yr and 1220±220 yr.

In the following, these empirical constraints will be referred to as the EDC-Δage and EDML-Δage constraints, respectively.

3.2.2 The Δdepth method

The method is illustrated in Figs. 2 and 3. We start again by considering the EDC ice depth DC-d_1 of the ^{10}Be sub-peak, and the corresponding NorthGRIP ice depth NG-d_1. Assuming that CH$_4$ and the Greenland isotopes change synchronously, the methane variation corresponding to the NorthGRIP isotope variation at depth NG-d_1 is found in the EDC ice deeper than the ^{10}Be peak, at the depth DC-d_2. The gas age at DC-d_2 is identical to the ice age at DC-d_1, and the depth difference DC-d_2–DC-d_1 is an indirect measurement of Δdepth. With this method, uncertainties in the age scales are not relevant.

The uncertainty on the Δdepth evaluation corresponds to the square root of the sum of the squares of uncertainties of the ^{10}Be NorthGRIP and EDC synchronisation, and the isotope-methane NorthGRIP-EDC synchronisation. The uncertainties introduced by the linear interpolation between NorthGRIP-EDC on the ^{10}Be synchronisation are negligible.

At EDC, Δdepth for the two ^{10}Be sub-peaks amounts to 47.3±2.3 m and 47.5±2.3 m (see Table 1, and Supplement_1 at http://www.clim-past.net/3/527/2007/cp-3-527-2007-supplement.zip for more details).

The same procedure is applied to EDML, adding the uncertainty on the EDML-EDC synchronisation. Δdepth then amounts to 21.4±4.6 m and 23.1±4.6 m.

In the following, these empirical constraints will be referred to as the EDC-Δdepth and EDML-Δdepth constraints, respectively.
EDML deuterium data (EPICA Community Members, 2006) are in black. EDML methane data (this study) are in blue. NorthGRIP $\delta^{18}O$ (NorthGRIP community members, 2004) is in red.

4 Testing firn densification model scenarios

In this section, we test different temperature and accumulation rate scenarios at EDC and EDML against the Δage and Δdepth empirical constraints described in Sect. 3: EDC-EDML methane synchronisation, and Δage and Δdepth at the location of the 10Be peak. Numerical values are given in Supplement_2 (EDC) and 3 (EDML) (http://www.clim past.net/3/527/2007/cp-3-527-2007-supplement.zip).

4.1 Scenario 1: EDC3 and EDML1 temperature and accumulation rate histories

With the EDC3 chronology (Parrenin et al., 2007a), the surface temperature history is deduced from the isotopic content of the ice without correction for source temperature variations. The β coefficient in Eq. (2) has then been determined in order that the resulting chronology agrees with the absolute age of the 10Be peak at 41 kyr BP. The inferred value is 0.0157. The accumulation rate has been further slightly modified in order to synchronize the EDC3 age scale onto GICC05 at several tie points (Parrenin et al., 2007a). For EDML, source temperature variations were not considered either and β has been set to 0.015 (EPICA community members, 2006).

The α coefficient in Eq. (1) representing the spatial slope of the present-day isotopic thermometer is estimated empirically at EDC as 0.1656 K/‰ from the present day-surface measurements between Dumont d’Urville and Dome C (Lorius and Merlivat, 1977). For EDML, the equivalent, this time relating temperature to $\delta^{18}O$, is estimated empirically as 1.220 K/‰ from the relationship between $\delta^{18}O$ and surface temperature at Dronning Maud Land (EPICA community members, 2006).

Overall, the EDC3 and EDML1 climatic inputs to the densification model provide a poor agreement with the empirical constraints (Table 3 and Fig. 4). The EDML gas time scale is always older than the EDC gas time scale (see Fig. 4), with an average difference of 850 yr. The difference ranges from 300 yr (Younger Dryas/ Holocene transition) to 1150 yr (onset of DO #6). This implies that either the EDC Δage is overestimated or the EDML one is underestimated. The discrepancy being smaller during the last deglaciation than during the last glacial period, the modelling error appears to increase during cold conditions (Fig. 4).

At the time of the two 10Be sub-peaks, the EDC (EDML) modelled Δage amounts to 5050 yr and 5010 yr (1370 and 1320 yr), i.e. 20 (15%) larger than the empirically derived values of 3960 and 4040 yr (1080 and 1220 yr) and outside their confidence interval of 290 and 290 yr (240 and 220 yr). The comparison follows the same trend for the Δdepth constraints. The EDC (EDML) modelled estimates amounts to 55.3 and 55.0 m (22.9 and 22.9 m) and are larger by 15% (larger by about 6%) than the empirical values.
Table 3. Comparison between the outputs of firn densification modelling scenarios and empirical constraints as derived in Sect. 3. Cf. Sect. 4 for a description of the scenarios.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
<th>Empirical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling sites</td>
<td>EDC</td>
<td>EDML</td>
<td>EDC</td>
<td>EDML</td>
<td>EDC</td>
</tr>
<tr>
<td>Δage for both sub-peaks [yr]</td>
<td>5050</td>
<td>1370</td>
<td>4820</td>
<td>1330</td>
<td>4820</td>
</tr>
<tr>
<td>Differences between modelled and empirical Δage [yr]</td>
<td>5010</td>
<td>1320</td>
<td>4800</td>
<td>1280</td>
<td>4810</td>
</tr>
<tr>
<td>Δdepth for both sub-peaks [m]</td>
<td>55.3</td>
<td>22.9</td>
<td>53.2</td>
<td>22.2</td>
<td>54.1</td>
</tr>
<tr>
<td>Differences between modelled and empirical Δdepth [m]</td>
<td>55.0</td>
<td>22.9</td>
<td>52.6</td>
<td>22.8</td>
<td>53.5</td>
</tr>
<tr>
<td>Mean differences between two chronologies (EDML-EDC) [m]</td>
<td>850</td>
<td>660</td>
<td>630</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Scenario 2: EDC3 and EDML1 accumulation rate histories, reduced amplitude of glacial-interglacial temperature change

In scenario 1, the modelled Δage at both EDML and EDC is too large during the 10Be peak. One way to resolve this discrepancy is to reduce the amplitude of the glacial-interglacial temperature change. Relatively warmer temperatures lead to a faster densification process, a shallower close-off depth and a reduced Δage. In scenario 2 we keep the EDC3 and EDML1 accumulation rates unchanged (Sect. 3.1) and we reduce the glacial-interglacial temperature amplitude to a factor α=0.1403 K/‰.

This scenario generally gives a slightly better agreement than scenario 1 with the empirical constraints derived in Sect. 3 (Table 3 and Fig. 4). The difference between the EDC and EDML gas age scales is slightly reduced, with an average of 660 yr. During the 10Be sub-peaks Δage at EDC (EDML) is 4820 yr and 4800 yr (1330 and 1280 yr), around 20% (10%) higher than the empirical values. Δdepth at EDC (53.2 and 52.6 m) remains significantly larger than the empirical values. For EDML, the Δdepth (22.2 and 22.8 m) is still a little bit larger than the empirical values.

4.3 Scenario 3: EDC3 and EDML1 accumulation rate histories, EDC temperature corrected for source effects

In this scenario, the EDC3 temperature history is corrected for variations in the mean ocean isotopic composition, but not for source temperature variations. Vimeux et al. (2002) showed for the Vostok ice core that taking into account source temperature variations reduces the amplitude of the glacial-interglacial surface temperature change by up to 2°C. In scenario 3, we apply such a correction using the deuterium excess record (Stenni et al., 2003, and new data, B. Stenni, personal communication). In general, temperatures are warmer during the glacial period compared to scenario 1. The EDC accumulation rate history is kept identical to scenario 1, as well as the EDML temperature and accumulation rate histories.

Overall, this scenario gives results very close to scenario 2 (Table 3 and Fig. 4). The agreement between the EDC and
EDML gas age scales is slightly improved, with an average shift of 630 yr. During the 10Be sub-peaks, the EDC Δage is 4820 yr and 4810 yr, around 20% higher than the empirical values. The EDC Δdepth (54.1 m and 53.5 m) remains significantly larger than the empirical values. For EDML, this scenario 3 is the same as scenario 1.

4.4 Scenario 4: EDC3 and EDML1 temperature histories, reduced amplitude of glacial-interglacial accumulation rate changes

Another way to reduce Δage is to increase the past accumulation rate. In scenario 4, we choose β to be 0.0094 for EDC and 0.0120 for EDML, the temperature histories remaining identical to scenario 1. These values have been obtained by a manual trial and error method, in order to minimize the discrepancy between model and empirical constraints.

Overall this scenario provides an excellent agreement with the EDC-EDML empirical constraint, with an average shift of only 30 yr (Table 3, Figs. 4, 5a). There are two notable exceptions: during the last deglaciation, the EDML gas chronology is older than the EDC one by a few centuries, and vice versa during DO #9.

During the 10Be sub-peaks, EDC (EDML) Δage is 3970 yr and 4020 yr (1270 and 1220 yr), in excellent agreement with the empirical values and well within their confidence intervals.

Δdepth at EDC (44.5 m and 44.3 m) and EDML (21.7 m and 21.7 m) are now significantly smaller, and also in good agreement with the empirical values. Indeed, Δdepth is equal to the product of the close-off depth in ice equivalent (CODIE) times the thinning function. In this scenario, we increased the glacial accumulation rate while keeping the same ice chronology, and thus implicitly decreased this thinning function, thus leading to smaller Δdepths.

In Fig. 5b, the EPICA gas chronologies are compared to the NorthGRIP one. The Antarctic ice age time scales were fitted to NorthGRIP time scale at the 10Be peak (Parrenin et al., 2007). Disagreements between the GICC05 and the EDC or EDML gas age scale away from the 10Be peak thus may result either from an error in the Antarctica-Greenland ice synchronisation, or/and from an error in the Δage estimates at the Antarctic sites. As expected, EDC and NorthGRIP chronologies agree well at the time of DO #8 (EDC gas trapped at the depth of the 10Be peak), i.e. at the depth of the 10Be-peak empirical constraint.

5 Discussion

The comparison between our empirical constraints on EDC and EDML Δage and Δdepth and different firn densification modelling scenarios indicate that the official EDC3 and EDML1 ice chronology, temperature and accumulation rate histories are clearly inconsistent with the EDML-EDC methane synchronization constraint. Either the EDC glacial Δage is greatly overestimated or the EDML glacial Δage is greatly underestimated. Such an inconsistency of EDC modelled gas ages has already been suggested by comparing them to the Byrd ice core constraints (Schwander et al., 2001). The shift between the two gas chronologies roughly resembles the isotopic signal (being inversely correlated, Fig. 4).

Comparison between model and empirical Δage constraints based on methane synchronization was also done for the Vostok (low accumulation rate) and Byrd ice cores (high accumulation rate) (Blunier et al., 2004; Bender et al. 2006). Results are not unambiguous; and systematic overestimation of Δage by the model has not been considered. At Vostok, the thinning of ice is related to the thickness of the ice column upstream from the drilling site, where the ice originates from. As shown by Parrenin et al. (2004), differences of up to 20% in the thinning function at Vostok can be obtained depending on the scenario on the ice flow. This makes Vostok a less suitable site than EDC to constraint Δage and Δdepth based on the ice and gas chronological tie points. At EDC, if the
dome location remained stable, the total thinning is approximately linearly related to the depth of ice layers (Parrenin et al., 2007).

The origin of the inconsistency between model outputs and the observation lies 1) either in the parameterization of the surface temperature; or 2) in the parametrization of the surface accumulation rate; or 3) in the calculation of the thinning function at both sites; or 4) in the physical representation of the densification process in the model; or 5) any combination of the four previous options.

A test with different temperature scenarios (scenarios 2 and 3) only removes a fraction of the disagreement with empirical constraints. These scenarios reduce the glacial-interglacial amplitude of temperature change by about 15%, which seems to be a maximum bound according to different evidences presently available for the East Antarctic plateau (Jouzel et al., 2003; Blunier et al., 2004). Salamatin et al. (1998) and Tsyganova and Salamatin (2004) suggest on the other hand a large underestimate of the temperature change, which would make even worse the disagreement between modelled and observed \(\Delta \text{age} \) and \(\Delta \text{depth} \). To our knowledge, there is no other study proposing smaller amplitude of glacial-interglacial temperature change than the one deduced from the standard isotope/temperature relationship in Antarctica. In summary, only a small fraction of the disagreement can thus originate from the temperature scenario.

Using larger glacial accumulation rates at both EDC and EMDL (scenario 4) than those classically deduced from water isotopes, we are able to get a much improved agreement between firn densification model outputs and \(\Delta \text{age} \) empirical constraints. But at EDC, it represents an average accumulation rate of 63% of the present-day value during the last glacial maximum, corresponding to an increase of more than 30% with respect to the EDC3 official scenario. The annual layer thickness in the EDC3 chronology is the product of the accumulation rate (the initial annual layer thickness) and the thinning function (evaluated with a mechanical ice-flow model, Parrenin et al., 2007). The EDC3 chronology is constrained within \(-1\) kyr at the location of the Be peak 41 kyr BP, being synchronized onto the NorthGRIP annual layer-counted GICC05 age scale (Andersen et al., 2006; Svensson et al., 2006). Increased glacial accumulation rates as in scenario 4 are thus physically compatible with the ice core chronology only if they are compensated by a proportional decrease in the thinning function. However, the latter varies between 1 at the surface and 0.75 at 850 m of depth (\(-50\) kyr BP) and it is considered very well constrained under ice-flow conditions for the upper quarter of an ice dome (Parrenin et al., 2007). A correction of about 30% of the thinning function in this EDC depth range thus seems to be unrealistic.

It could be argued that the EMDL-EDC methane disagreement results from an underestimated \(\Delta \text{age} \) at EMDL. However, EMDL \(\Delta \text{age} \) during the last glacial amounts to 1000–1500 yr, and a mean underestimate of 800 yr (50 to 80%) is not feasible. We conclude that the firn densification model overestimates \(\Delta \text{age} \) at EDC during the last glacial period.

A possible origin of disagreement between model and empirical constraints is a missing phenomenon in the firn densification model. As already suggested by the \(\delta^{15}\text{N} \) data at Vostok (Sowers et al., 1992), firn densification models could lead to an overestimate of the close-off depth for the very cold and low accumulation conditions of the glacial Antarctic plateau, for which no present-day analogue exists so far. There are 3 possible sources of modelling errors. First, surface density may be underestimated during glacial times. Indeed, surface density depends on the characteristics of the surface: megadunes, glazed surfaces and areas with relative densities of \(-0.5\) have been observed on the East Antarctic plateau and make this option plausible. Second, the densification velocity may be underestimated for glacial conditions. The densification model of Salamatin et al. (2007), simultaneously calculating grain sliding and plastic deformation along the firn column, indeed leads to faster densification that the model of Goujon et al. (2003). Third, the density at the close-off depth may be less during glacial times. The density at the bottom of the non-diffusive zone is relatively well constrained by the total air content measurements, and we thus do not expect important changes. But the depth difference between the Lock-In Depth (where gases stop diffusing) and the COD (where gases are on average definitely trapped) may be significantly larger than today for glacial conditions. At this stage, we have no strong argument to favour any of these options.

What is not satisfying in any of the scenarios above is that the modelled COD is much too large compared to the observed LID calculated from \(\delta^{15}\text{N} \) data for EMDL (Landais et al., 2006). We made the following experiment in attempt to bring both \(\Delta \text{age} \) and COD in agreement with the observation. We reduced COD from scenario 1 (with a largely overestimated \(\Delta \text{age} \)) by a given factor so that it is in better agreement to the \(\delta^{15}\text{N} \) derived LID during the glacial (data not shown here). By this totally empirical correction it is possible to get a generally good agreement with the empirical values, about similar to scenario 4 with respect to \(\Delta \text{age} \). However, the limitation of this approach is that the physics in this process is not explained and that the variations of \(\delta^{15}\text{N} \) parameter is not fully understood for glacial conditions for a lot of different sites (EMDL; Landais et al., 2006, EDC, Berkner; Capron et al., 2007).

Whatever the physical explanation, our re-evaluation of \(\Delta \text{age} \) at EDC has potentially large consequences on one of the key questions regarding climate and carbon cycle dynamics: the relative timing between Antarctic climate and \(\text{CO}_2 \) mixing ratio changes. Current estimates of the time relationship between the two signals at the start of the last deglaciation based on detailed EDC measurements, point to a \(\text{CO}_2 \) lag of 800±600 yr compared to the \(\delta\text{D} \) increase (Monnin et al., 2001). This conclusion based on a \(\Delta \text{age} \) calculation similar to scenario 1 has to be revisited, as this scenario applied
to the 10Be peak at 41.2 kyr BP leads to a Δage overestimate of more than 1000 yr. Indeed the gas age difference between EDC and EDML shows an overestimate for the entire glacial period and the last deglaciation. We conclude that the CO$_2$ deglacial increase took place with a significantly smaller lag over Antarctic temperature than previously suggested. The consequences of such a suggestion are far beyond the scope of this paper and should certainly wait for confirmation through other time markers in the ice allowing a direct chronological fit between EDC and the Greenland ice. Furthermore CO$_2$ measurements on the EDML core with a much smaller Δage will allow estimation of the timing of CO$_2$ and temperature rise with much more confidence. However, with the information at hand through our study, it is likely that the EDC Δage and therefore the CO$_2$ lag on East Antarctic temperature has also been overestimated around 18 kyr BP.

6 Conclusions

An improved time resolution of CH$_4$ measurements on the EDC and EDML ice cores, notably over DO #9 and 10, allowed us to evaluate the compatibility of the EDC and EDML gas chronologies. The combination of EDC-EDML gas synchronisation through CH$_4$ and ice synchronisation through volcanic horizons provides a constraint on the gas age-ice age difference at both sites. At the location of the 41 kyr 10Be event, the ice synchronisation of EDC with NorthGRIP allows us to empirically evaluate this Δage (as well as the Δdepth) for EDC and EDML.

The EDC Δage and Δdepth produced by the firm densification model can match our new empirical constraints only through larger accumulation rate at EDC and EDML during the last glacial period, compared with current estimates. However, it requires modification of the EDC chronology, which would change either the age of the 41 kyr 10Be event, or the modelled EDC thinning function, both of them being robust estimates. Although the exact causes of the Δage overestimate remain unknown, our work implies that the suggested lag of CO$_2$ on Antarctic temperature at the start of the last deglaciation has probably been overestimated.

Independent estimates of paleo-accumulation rates via chemical tracers would remove the current doubt on the accumulation rate scenario. In addition, the precision of our method could be improved through direct synchronisation of a future detailed CH$_4$ record from NorthGRIP with its Antarctic counterparts. Finally, a similar study of the Japanese Dome Fuji ice core, also situated on a dome and characterized by a slightly larger accumulation rate relative to EDC, would help to better understand the physics behind the densification process on the East Antarctic plateau during glacial conditions.

Acknowledgements. This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission scientific programme, funded by the EU (EPICA-MIS) and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by IPEV and PNRA (at Dome C) and AWI (at Dronning Maud Land). This is EPICA publication no. 182.

References

Bintanja, R., Van De Wal, R. S. W., and Oerlemans, J.: Modellled atmospheric temperatures and global sea levels over the past million years, Nature, 437, 125–128, 2005.

http://www.clim-past-discuss.net/3/19/2007/.

