Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.470 IF 3.470
  • IF 5-year value: 4.009 IF 5-year
    4.009
  • CiteScore value: 3.45 CiteScore
    3.45
  • SNIP value: 1.166 SNIP 1.166
  • IPP value: 3.28 IPP 3.28
  • SJR value: 1.929 SJR 1.929
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 64 Scimago H
    index 64
  • h5-index value: 43 h5-index 43
Volume 6, issue 4 | Copyright
Clim. Past, 6, 501-513, 2010
https://doi.org/10.5194/cp-6-501-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  29 Jul 2010

29 Jul 2010

Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China)

G. Q. Xiao1,2, H. A. Abels3, Z. Q. Yao1, G. Dupont-Nivet4, and F. J. Hilgen3 G. Q. Xiao et al.
  • 1State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, P.O. Box 17, Xian, 710075, China
  • 2Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
  • 3Stratigraphy/Paleontology, Dept. of Earth Sciences, Utrecht University, Utrecht, The Netherlands
  • 4Paleomagnetic Laboratory "Fort Hoofddijk", Dept. of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Abstract. Asian terrestrial records of the Eocene-Oligocene Transition (EOT) are rare and, when available, often poorly constrained in time, even though they are crucial in understanding the atmospheric impact of this major step in Cenozoic climate deterioration. Here, we present a detailed cyclostratigraphic study of the continuous continental EOT succession deposited between ~35 to 33 Ma in the Xining Basin at the northeastern edge of Tibetan Plateau. Lithology supplemented with high-resolution magnetic susceptibility (MS), median grain size (MGS) and color reflectance (a*) records reveal a prominent ~3.4 m thick basic cyclicity of alternating playa gypsum and dry mudflat red mudstones of latest Eocene age. The magnetostratigraphic age model indicates that this cyclicity was most likely forced by the 41-kyr obliquity cycle driving oscillations of drier and wetter conditions in Asian interior climate from at least 1 million year before the EOT. In addition, our results suggest a duration of ~0.9 Myr for magnetochron C13r that is in accordance with radiometric dates from continental successions in Wyoming, USA, albeit somewhat shorter than in current time scales. Detailed comparison of the EOT interval in the Tashan section with marine records suggest that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes across the EOT. This first step precedes the major and second step (i.e. the base of Oi-1) and has recently been reported to be mainly related to atmospheric cooling rather than ice volume growth. Coincidence with lithofacies changes in our Chinese record would suggest that the atmospheric impact of the first step was of global significance, while the major ice volume increase of the second step did not significantly affect Asian interior climate.

Publications Copernicus
Download
Citation
Share