Caldeira, K. and Kasting, J. F.: Susceptibility of the Early earth to irreversible glaciation caused by carbon-dioxide clouds, Nature, 359, 226–228, 1992b.
Calogovic, J., Albert, C., Arnold, F., Beer, J., Desorgher, L., and Flueckiger, E. O.: Sudden cosmic ray decreases: No change of global cloud cover, Geophys. Res. Lett., 37, L03802, https://doi.org/10.1029/2009GL041327, 2010.
Charlock, T. P.: Cloud optical feedback and climate stability in a radiative-convec tive model, Tellus, 34, 245–254, 1982.
Charlson, R., Lovelock, J. E., Andreae, M., and Warren, S.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, https://doi.org/10.1038/326655A0, 1987.
Christidis, N., Hurley, M. D., Pinnock, S., Shine, K. P., and Wallington, T. J.: Radiative forcing of climate change by CFC-11 and possible CFC replacements, J. Geophys. Res., 102, 19597–19609, 1997.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Collins, W. D., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W., Fu, Q., Casanova, S. E. B., Dufresne, J.-L., Fillmore, D. W., Forster, P. M. D., Galin, V. Y., Gohar, L. K., Ingram, W. J., Kratz, D. P., Lefebvre, M., Li, J., Marquet, P., Oinas, V., Tsushima, Y., Uchiyama, T., and Zhong, W. Y.: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713, 2006.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L., Cambridge Univ. Press, Cantab. UK and New York, NY, USA, 2007.
Franck, S., Block, A., von Bloh, W., Bounama, C., Schellnhuber, H. J., and Svirezhev, Y.: Reduction of biosphere life span as a consequence of geodynamics, Tellus B, 52, 94–107, 2000.
Freckleton, R. S. J. H. E., Shine, K. P., Wild, O., Law, K. S., and Sanderson, M. G.: Greenhouse gas radiative forcing: effects of averaging and inhomogeneities in trace gas distribution, Q. J. Roy. Meteor. Soc., 124, 2099–2127, 1998.
Fu, Q., Yang, P., and Sun, W. B.: An accurate parameterization of the intrared radiative properties of cirrus coluds for climate models, J. Climate, 11, 2223–2237, 1998.
Goldblatt, C., Lenton, T. M., and Watson, A. J.: Bistability of atmospheric oxygen and the Great Oxidation, Nature, 443, 683–686, https://doi.org/10.1038/nature05169, 2006.
Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., and Zahnle, K. J.: Nitrogen-enhanced greenhouse warming on early Earth, Nat. Geosci., 2, 891–896, https://doi.org/10.1038/ngeo692, 2009a.
Goldblatt, C., Lenton, T. M., and Watson, A. J.: An evaluation of the longwave radiative transfer code used in the Met Office Unified Model, Q. J. Roy. Meteor. Soc., 135, 619–633, https://doi.org/10.1002/qj.403, 2009b.
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P., and Kasting, J. F.: A revised, hazy methane greenhouse for the Archean Earth, Astrobiology, 8, 1127–1137, https://doi.org/10.1089/ast.2007.0197, 2008.
Hu, Y.-X. and Stamnes, K.: An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models, J. Climate, 6, 728–742, 1993.
Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: Radiative forcings and global warming potentials of 39 greenhouse gases, J. Geophys. Res., 105, 20773–20790, 2000.
Kasting, J. F.: Theoretical constraints on oxygen and carbon-dioxide concentrations in the Precambrian atmosphere, Precambrian Res., 34, 205–229, 1987.
Kasting, J. F.: Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus, 74, 472–494, 1988.
Kasting, J. F.: Methane and climate during the Precambrian era, Precambrian Res., 137, 119–129, 2005.
Kettle, A. J., Rhee, T. S., von Hobe, M., Poulton, A., Aiken, J., and Andreae, M. O.: Assessing the flux of different volatile sulfur gases from the ocean to the atmosphere, J. Geophys. Res., 106, 12193–12210, https://doi.org/10.1029/2000JD900630, 2001.
Kiehl, J. T. and Dickinson, R. E.: A study of the radiative effects fo enhanced atmospheric CO
2 and CH
4 on early Earth surface temperatures, J. Geophys. Res., 92, 2991–2998, 1987.
Kreidenweis, S. M. and Seinfeld, J. H.: Nucleation of sulfuric acid-water and methanesulfonic acid-water solution particles: Implications for the atmospheric chemistry of organosulfur species, Atmos. Environ., 22, 283–296, https://doi.org/10.1016/0004-6981(88)90034-0, 1988.
Kristjánsson, J. E., Stjern, C. W., Stordal, F., Fjæraa, A. M., Myhre, G., and Jónasson, K.: Cosmic rays, cloud condensation nuclei and clouds -– a reassessment using MODIS data, Atmos. Chem. Phys., 8, 7373–7387, https://doi.org/10.5194/acp-8-7373-2008, 2008.
Kulmala, M., Riipinen, I., Nieminen, T., Hulkkonen, M., Sogacheva, L., Manninen, H. E., Paasonen, P., Petäjä, T., Dal Maso, M., Aalto, P. P., Viljanen, A., Usoskin, I., Vainio, R., Mirme, S., Mirme, A., Minikin, A., Petzold, A., Hõrrak, U., Pla{ß}-Dülmer, C., Birmili, W., and Kerminen, V.-M.: Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation, Atmos. Chem. Phys., 10, 1885–1898, https://doi.org/10.5194/acp-10-1885-2010, 2010.
Kump, L. R. and Pollard, D.: Amplification of Cretaceous Warmth by Biological Cloud Feedbacks, Scinece, 320, 195, https://doi.org/10.1126/science.1153883, 2008.
Lenton, T. M.: Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus B, 52, 1159–1188, 2000.
Lockwood, M. and Fröhlich, C.: Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature, P. Roy. Soc. A, 463, 2447–2460, https://doi.org/10.1098/rspa.2007.1880, 2007.
McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garling, J. S.: Optical properties of the atmosphere (revised), Environmental Research Papers 354, Air Force Cambridge Research Laboratories, 1971.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k method for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Myhre, G. and Stordal, F.: Role of spatial and temporal variations in the computaion of radiative forcing and GWP, J. Geophys. Res., 102, 11181–11200, 1997.
Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R.: Greenhouse warming by CH
4 in the atmosphere of early Earth, J. Geophys. Res., 105, 11981–11990, 2000.
Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., and Arthur, M. A.: Methane-rich Proterozoic atmosphere?, Geology, 31, 87–90, 2003.
Penner, J. E., Quaas, J., Storelvmo, T., Takemura, T., Boucher, O., Guo, H., Kirkevåg, A., Kristjánsson, J. E., and Seland, Ø.: Model intercomparison of indirect aerosol effects, Atmos. Chem. Phys., 6, 3391–3405, https://doi.org/10.5194/acp-6-3391-2006, 2006.
Pinnock, S., Hurley, M. D., Shine, K. P., Wallington, T. J., and Smyth, T. J.: Radiative forcing of climate by hydrochloroflorocarbons and hydroflorocarbons, J. Geophys. Res., 100, 23277–23238, 1995.
Reck, R.: Comparison of fixed cloud-top temperature and fixed cloud-top altitude approximations in the Manabe-Wetherald radiative-convective atmospheric model, Tellus, 31, 400–405, 1979.
Ringwood, A.: Changes in solar luminosity and some possible terrestrial consequences, Geochim. Cosmochim. Acta, 21, 295–296, https://doi.org/10.1016/S0016-7037(61)80064-1, 1961.
Rondanelli, R. and Lindzen, R. S.: Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox?, J. Geophys. Res., 115, D02108, https://doi.org/10.1029/2009JD012050, 2010.
Rosing, M. T., Bird, D. K., Sleep, N. H., and Bjerrum, C. J.: No climate paradox under the faint early Sun, Nature, 464, 744–747, https://doi.org/10.1038/nature08955, 2010.
Rossow, W. B., Zhang, Y., and Wang, J.: A Statistical Model of Cloud Vertical Structure Based on Reconciling Cloud Layer Amounts Inferred from Satellites and Radiosonde Humidity Profiles, J. Climate, 18, 3587–3605, https://doi.org/10.1175/JCLI3479.1, 2005.
Sagan, C. and Mullen, G.: Earth and Mars: evolution of atmospheres and surface temperatures, Science, 177, 52–56, 1972.
Schneider, S. H.: Cloudiness as a global climatic feedback mechanism: the effects on the radiation balance and surface temperature variations in cloudiness, J. Atmos. Sci., 29, 1413–1422, 1972.
Shaviv, N. J.: Toward a solution to the early faint Sun paradox: A lower cosmic ray flux from a stronger solar wind, J. Geophys. Lett., 108, 1437, https://doi.org/10.1029/2003JA009997, 2003.
Sun, B. and Bradley, R. S.: Solar influences on cosmic rays and cloud formation: A reassessment, J. Geophys. Res., 107, 4211, https://doi.org/10.1029/2001JD000560, 2002.
Svensmark, H.: Cosmoclimatology: a new theory emerges, Astron. Geophys., 48, 1.18–1.24, 2007.
Svensmark, H. and Friis-Christensen, E.: Variations of cosmic ray flux and global cloud coverage – A missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phy., 59, 1225–1232, 1997.
Tajika, E.: Faint young Sun and the carbon cycle: implications for the Proterozoic global glaciations, Earth Planet. Sc. Lett., 214, 443–453, 2003.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J. T.: Earth's global energy budget, B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Ueno, Y., Johnson, M. S., Danielache, S. O., Eskebjerg, C., Pandey, A., and Yoshida, N.: Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox, P. Natl. Acad. Sci. USA, 106, 14784–14789, 2009.
von Bloh, W., Bounama, C., and Franck, S.: Cambrian Explosion triggered by geosphere biosphere feedback, Geophys. Res. Lett., 30(18), 1963, https://doi.org/10.1029/2003GL017928, 2003a.
von Bloh, W., Franck, S., Bounama, C., and Schellnhuber, H. J.: Biogenic enhancement of weathering and the stability of the ecosphere, Geomicrobiol. J., 20, 501–511, 2003b.
von Glasow, R. and Crutzen, P. J.: Model study of multiphase DMS oxidation with a focus on halogens, Atmos. Chem. Phys., 4, 589–608, https://doi.org/10.5194/acp-4-589-2004, 2004.
Wang, W.-C. and Stone, P. H.: Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model, J. Atmos. Sci., 37, 545–552, 1980.
Zhang, Y. C., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I.: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457, 2004.