Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.470 IF 3.470
  • IF 5-year value: 4.009 IF 5-year
    4.009
  • CiteScore value: 3.45 CiteScore
    3.45
  • SNIP value: 1.166 SNIP 1.166
  • IPP value: 3.28 IPP 3.28
  • SJR value: 1.929 SJR 1.929
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 64 Scimago H
    index 64
  • h5-index value: 43 h5-index 43
Volume 7, issue 2 | Copyright

Special issue: Advances in understanding the Quaternary carbon cycle

Clim. Past, 7, 473-486, 2011
https://doi.org/10.5194/cp-7-473-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 May 2011

Research article | 04 May 2011

Abrupt rise in atmospheric CO2 at the onset of the Bølling/Allerød: in-situ ice core data versus true atmospheric signals

P. Köhler1, G. Knorr1,2, D. Buiron3, A. Lourantou3,*, and J. Chappellaz3 P. Köhler et al.
  • 1Alfred Wegener Institute for Polar and Marine Research (AWI), P.O. Box 120161, 27515 Bremerhaven, Germany
  • 2School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK
  • 3Laboratoire de Glaciologie et Géophysique de l'Environnement, (LGGE, CNRS, Université Joseph Fourier-Grenoble), 54b rue Molière, Domaine Universitaire BP 96, 38402 St. Martin d'Hères, France
  • *now at: Laboratoire d'Océanographie et du Climat (LOCEAN), Institut Pierre Simon Laplace, Université P. et M. Curie (UPMC), Paris, France

Abstract. During the last glacial/interglacial transition the Earth's climate underwent abrupt changes around 14.6 kyr ago. Temperature proxies from ice cores revealed the onset of the Bølling/Allerød (B/A) warm period in the north and the start of the Antarctic Cold Reversal in the south. Furthermore, the B/A was accompanied by a rapid sea level rise of about 20 m during meltwater pulse (MWP) 1A, whose exact timing is a matter of current debate. In-situ measured CO2 in the EPICA Dome C (EDC) ice core also revealed a remarkable jump of 10 ± 1 ppmv in 230 yr at the same time. Allowing for the modelled age distribution of CO2 in firn, we show that atmospheric CO2 could have jumped by 20–35 ppmv in less than 200 yr, which is a factor of 2–3.5 greater than the CO2 signal recorded in-situ in EDC. This rate of change in atmospheric CO2 corresponds to 29–50% of the anthropogenic signal during the last 50 yr and is connected with a radiative forcing of 0.59–0.75 W m−2. Using a model-based airborne fraction of 0.17 of atmospheric CO2, we infer that 125 Pg of carbon need to be released into the atmosphere to produce such a peak. If the abrupt rise in CO2 at the onset of the B/A is unique with respect to other Dansgaard/Oeschger (D/O) events of the last 60 kyr (which seems plausible if not unequivocal based on current observations), then the mechanism responsible for it may also have been unique. Available δ13CO2 data are neutral, whether the source of the carbon is of marine or terrestrial origin. We therefore hypothesise that most of the carbon might have been activated as a consequence of continental shelf flooding during MWP-1A. This potential impact of rapid sea level rise on atmospheric CO2 might define the point of no return during the last deglaciation.

Publications Copernicus
Special issue
Download
Citation
Share