Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.470 IF 3.470
  • IF 5-year value: 4.009 IF 5-year
    4.009
  • CiteScore value: 3.45 CiteScore
    3.45
  • SNIP value: 1.166 SNIP 1.166
  • IPP value: 3.28 IPP 3.28
  • SJR value: 1.929 SJR 1.929
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 64 Scimago H
    index 64
  • h5-index value: 43 h5-index 43
Volume 9, issue 2
Clim. Past, 9, 955–968, 2013
https://doi.org/10.5194/cp-9-955-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Progress in paleoclimate modelling

Clim. Past, 9, 955–968, 2013
https://doi.org/10.5194/cp-9-955-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Apr 2013

Research article | 10 Apr 2013

Model sensitivity to North Atlantic freshwater forcing at 8.2 ka

C. Morrill1,2, A. N. LeGrande3, H. Renssen4, P. Bakker4, and B. L. Otto-Bliesner5 C. Morrill et al.
  • 1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
  • 2National Oceanic and Atmospheric Administration's National Climatic Data Center, Boulder, CO, USA
  • 3NASA Goddard Institute for Space Studies and Center for Climate Systems Research, New York, NY, USA
  • 4Department of Earth Sciences, VU University Amsterdam, the Netherlands
  • 5Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA

Abstract. We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10–25% in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of ~150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

Publications Copernicus
Download
Citation